polytope


Durer's Conjecture ★★★

Author(s): Durer; Shephard

Conjecture   Every convex polytope has a non-overlapping edge unfolding.

Keywords: folding; polytope

Cube-Simplex conjecture ★★★

Author(s): Kalai

Conjecture   For every positive integer $ k $, there exists an integer $ d $ so that every polytope of dimension $ \ge d $ has a $ k $-dimensional face which is either a simplex or is combinatorially isomorphic to a $ k $-dimensional cube.

Keywords: cube; facet; polytope; simplex

Continous analogue of Hirsch conjecture ★★

Author(s): Deza; Terlaky; Zinchenko

Conjecture   The order of the largest total curvature of the primal central path over all polytopes defined by $ n $ inequalities in dimension $ d $ is $ n $.

Keywords: curvature; polytope

Average diameter of a bounded cell of a simple arrangement ★★

Author(s): Deza; Terlaky; Zinchenko

Conjecture   The average diameter of a bounded cell of a simple arrangement defined by $ n $ hyperplanes in dimension $ d $ is not greater than $ d $.

Keywords: arrangement; diameter; polytope

Fat 4-polytopes ★★★

Author(s): Eppstein; Kuperberg; Ziegler

The fatness of a 4-polytope $ P $ is defined to be $ (f_1 + f_2)/(f_0 + f_3) $ where $ f_i $ is the number of faces of $ P $ of dimension $ i $.

Question   Does there exist a fixed constant $ c $ so that every convex 4-polytope has fatness at most $ c $?

Keywords: f-vector; polytope

Hirsch Conjecture ★★★

Author(s): Hirsch

Conjecture   Let $ P $ be a convex $ d $-polytope with $ n $ facets. Then the diameter of the graph of the polytope $ P $ is at most $ n-d $.

Keywords: diameter; polytope

Syndicate content