login/create account
Generalised Empty Hexagon Conjecture
there is an integer
such that every set of at least
points in the plane contains
collinear points or an empty hexagon. Here an empty hexagon in a set of points
consists of a subset
of six points in convex position with no other point in
in the convex hull of
. The
case of the conjecture (that is, for point sets in general position) was an outstanding open problem for many years, until its solution by Gerken [G] and Nicolas [N]. Valtr [V] found a simple proof.
Bibliography
[G] Tobias Gerken. Empty Convex Hexagons in Planar Point Sets, Discrete Comput Geom (2008) 39:239–272, MathSciNet
[N] Carlos M. Nicolas. The Empty Hexagon Theorem, Discrete Comput Geom 38:389–397 (2007), MathSciNet.
[V] Pavel Valtr, On Empty Hexagons, in: J. E. Goodman, J. Pach, and R. Pollack, Surveys on Discrete and Computational Geometry, Twenty Years Later, Contemp. Math. 453, AMS, 2008, pp. 433-441.
* indicates original appearance(s) of problem.
Drupal
CSI of Charles University