Partial List Coloring

Importance: High ✭✭✭
Author(s): Iradmusa, Moharram
Recomm. for undergrads: no
Posted by: Iradmusa
on: May 12th, 2008

Let $ G $ be a simple graph, and for every list assignment $ \mathcal{L} $ let $ \lambda_{\mathcal{L}} $ be the maximum number of vertices of $ G $ which are colorable with respect to $ \mathcal{L} $. Define $ \lambda_t = \min{ \lambda_{\mathcal{L}} } $, where the minimum is taken over all list assignments $ \mathcal{L} $ with $ |\mathcal{L}| = t $ for all $ v \in V(G) $.

Conjecture   [2] Let $ G $ be a graph with list chromatic number $ \chi_\ell $ and $ 1\leq r\leq s\leq \chi_\ell $. Then \[\frac{\lambda_r}{r}\geq\frac{\lambda_s}{s}.\]

As you see this conjecture in the special case $ s=\chi_\ell $, is the conjecture of Albertson, Grossman and Haas [1]: $ \lambda_t\geq\frac{tn}{\chi_\ell} $ for any $ 0\leq t\leq \chi_\ell $.

Bibliography

[1] M. Albertson, S. Grossman and R. Haas, Partial list colouring, Discrete Math., 214(2000), pp. 235-240.

[2] Moharram N. Iradmusa, A Note on Partial List Colorings, Australasian Journal of Combinatorics, Vol.46, 2010, $ 19-24 $.


* indicates original appearance(s) of problem.