counting quantifiers


Vertex Cover Integrality Gap ★★

Author(s): Atserias

Conjecture   For every $ \varepsilon > 0 $ there is $ \delta > 0 $ such that, for every large $ n $, there are $ n $-vertex graphs $ G $ and $ H $ such that $ G \equiv_{\delta n}^{\mathrm{C}} H $ and $ \mathrm{vc}(G) \ge (2 - \varepsilon) \cdot \mathrm{vc}(H) $.

Keywords: counting quantifiers; FMT12-LesHouches

Fixed-point logic with counting ★★

Author(s): Blass

Question   Can either of the following be expressed in fixed-point logic plus counting:
    \item Given a graph, does it have a perfect matching, i.e., a set $ M $ of edges such that every vertex is incident to exactly one edge from $ M $? \item Given a square matrix over a finite field (regarded as a structure in the natural way, as described in [BGS02]), what is its determinant?

Keywords: Capturing PTime; counting quantifiers; Fixed-point logic; FMT03-Bedlewo

Syndicate content