Thomassen, Carsten


Partitionning a tournament into k-strongly connected subtournaments. ★★

Author(s): Thomassen

Problem   Let $ k_1, \dots , k_p $ be positve integer Does there exists an integer $ g(k_1, \dots , k_p) $ such that every $ g(k_1, \dots , k_p) $-strong tournament $ T $ admits a partition $ (V_1\dots , V_p) $ of its vertex set such that the subtournament induced by $ V_i $ is a non-trivial $ k_i $-strong for all $ 1\leq i\leq p $.

Keywords:

Edge-disjoint Hamilton cycles in highly strongly connected tournaments. ★★

Author(s): Thomassen

Conjecture   For every $ k\geq 2 $, there is an integer $ f(k) $ so that every strongly $ f(k) $-connected tournament has $ k $ edge-disjoint Hamilton cycles.

Keywords:

Subgraph of large average degree and large girth. ★★

Author(s): Thomassen

Conjecture   For all positive integers $ g $ and $ k $, there exists an integer $ d $ such that every graph of average degree at least $ d $ contains a subgraph of average degree at least $ k $ and girth greater than $ g $.

Keywords:

Arc-disjoint out-branching and in-branching ★★

Author(s): Thomassen

Conjecture   There exists an integer $ k $ such that every $ k $-arc-strong digraph $ D $ with specified vertices $ u $ and $ v $ contains an out-branching rooted at $ u $ and an in-branching rooted at $ v $ which are arc-disjoint.

Keywords:

Counting 3-colorings of the hex lattice ★★

Author(s): Thomassen

Problem   Find $ \lim_{n \rightarrow \infty} (\chi( H_n , 3)) ^{ 1 / |V(H_n)| } $.

Keywords: coloring; Lieb's Ice Constant; tiling; torus

Chords of longest cycles ★★★

Author(s): Thomassen

Conjecture   If $ G $ is a 3-connected graph, every longest cycle in $ G $ has a chord.

Keywords: chord; connectivity; cycle

The Bermond-Thomassen Conjecture ★★

Author(s): Bermond; Thomassen

Conjecture   For every positive integer $ k $, every digraph with minimum out-degree at least $ 2k-1 $ contains $ k $ disjoint cycles.

Keywords: cycles

Hamiltonian cycles in line graphs ★★★

Author(s): Thomassen

Conjecture   Every 4-connected line graph is hamiltonian.

Keywords: hamiltonian; line graphs

Syndicate content