Reed's omega, delta, and chi conjecture ★★★

Author(s): Reed

For a graph $ G $, we define $ \Delta(G) $ to be the maximum degree, $ \omega(G) $ to be the size of the largest clique subgraph, and $ \chi(G) $ to be the chromatic number of $ G $.

Conjecture   $ \chi(G) \le \ceil{\frac{1}{2}(\Delta(G)+1) + \frac{1}{2}\omega(G)} $ for every graph $ G $.

Keywords: coloring

Seymour's self-minor conjecture ★★★

Author(s): Seymour

Conjecture   Every infinite graph is a proper minor of itself.

Keywords: infinite graph; minor

Universal point sets for planar graphs ★★★

Author(s): Mohar

We say that a set $ P \subseteq {\mathbb R}^2 $ is $ n $-universal if every $ n $ vertex planar graph can be drawn in the plane so that each vertex maps to a distinct point in $ P $, and all edges are (non-intersecting) straight line segments.

Question   Does there exist an $ n $-universal set of size $ O(n) $?

Keywords: geometric graph; planar graph; universal set