Open Problem Garden
Help
About
Contact
login/create account
Home
Solved problems
Title
Author(s)
Imp.¹
Rec.²
Area » Topic » Subtopic
Posted by
On Gersgorin Theorem
✭✭
0
Algebra
Miwa Lin
Inequality of complex numbers
✭✭
1
Analysis
feanor
Oakley sunglasses can successfully secure their sight will very likely be common-sense
✭✭
0
Analysis
haumiki
Difference between neighbors in a matrix
Vadim Lioubimov
✭
1
Combinatorics
»
Matrices
Vadim Lioubimov
Geometric Hales-Jewett Theorem
Por
;
Wood
✭✭
0
Geometry
David Wood
Hirsch Conjecture
Hirsch
✭✭✭
0
Geometry
»
Polytopes
Robert Samal
Decomposing the truncated octahedron into parallelepipeds
✭
1
Geometry
»
Polytopes
mdevos
spanning trees
✭✭
1
Graph Theory
akhodkar
Hitting every large maximal clique with a stable set
King
;
Rabern
✭✭
1
Graph Theory
Andrew King
Matching polynomials of vertex transitive graphs
Mohar
✭✭
0
Graph Theory
»
Algebraic G.T.
Robert Samal
Fowler's Conjecture on eigenvalues of (3,6)-polyhedra
Fowler
✭✭
0
Graph Theory
»
Algebraic G.T.
Robert Samal
The sum of the two largest eigenvalues
Gernert
✭✭
0
Graph Theory
»
Algebraic G.T.
mdevos
Total Domination number of a hypercube
Adel P. Kazemi
✭✭✭
0
Graph Theory
»
Basic G.T.
Adel P. Kazemi
Bigger cycles in cubic graphs
✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
mdevos
Middle levels problem
Erdos
✭✭
0
Graph Theory
»
Basic G.T.
»
Cycles
tchow
Petersen graph conjecture
Mkrtchyan
;
Petrosyan
✭
1
Graph Theory
»
Basic G.T.
»
Matchings
vahanmkrtchyan2002
Exponentially many perfect matchings in cubic graphs
Lovasz
;
Plummer
✭✭✭
0
Graph Theory
»
Basic G.T.
»
Matchings
mdevos
Colouring $d$-degenerate graphs with large girth
Wood
✭✭
1
Graph Theory
»
Coloring
David Wood
Good edge labeling and girth
Bode-Farzad-Theis
✭✭
0
Graph Theory
»
Coloring
»
Labeling
DOT
(2 + epsilon)-flow conjecture
Goddyn
;
Seymour
✭✭✭
0
Graph Theory
»
Coloring
»
Nowhere-zero flows
mdevos
Alon-Saks-Seymour Conjecture
Alon
;
Saks
;
Seymour
✭✭✭
0
Graph Theory
»
Coloring
»
Vertex coloring
mdevos
Bounding the chromatic number of graphs with no odd hole
Gyarfas
✭✭✭
0
Graph Theory
»
Coloring
»
Vertex coloring
mdevos
Coloring squares of hypercubes
Wan
✭✭
1
Graph Theory
»
Coloring
»
Vertex coloring
mdevos
Does every subcubic triangle-free graph have fractional chromatic number at most 14/5?
Heckman
;
Thomas
✭
0
Graph Theory
»
Coloring
»
Vertex coloring
Andrew King
Ohba's Conjecture
Ohba
✭✭
1
Graph Theory
»
Coloring
»
Vertex coloring
Jon Noel
Steinberg's conjecture
✭✭✭✭
0
Graph Theory
»
Coloring
»
Vertex coloring
fhavet
Choice number of complete multipartite graphs with parts of size 4
✭
1
Graph Theory
»
Coloring
»
Vertex coloring
Jon Noel
Total Dominator Chromatic Number of a Hypercube
Adel P. Kazemi
✭✭
0
Graph Theory
»
Coloring
»
Vertex coloring
Adel P. Kazemi
Nonrepetitive colourings of planar graphs
Alon N.
;
Grytczuk J.
;
Hałuszczak M.
;
Riordan O.
✭✭
0
Graph Theory
»
Coloring
»
Vertex coloring
David Wood
Monochromatic reachability in edge-colored tournaments
Erdos
✭✭✭
0
Graph Theory
»
Directed Graphs
»
Tournaments
mdevos
Bounded colorings for planar graphs
Alon
;
Ding
;
Oporowski
;
Vertigan
✭✭
1
Graph Theory
»
Topological G.T.
»
Coloring
mdevos
5-coloring graphs with small crossing & clique numbers
Oporowski
;
Zhao
✭✭
1
Graph Theory
»
Topological G.T.
»
Coloring
mdevos
Straight line representation of planar linear hypergraphs
Ossona de Mendez
;
de Fraysseix
✭✭
0
Graph Theory
»
Topological G.T.
»
Drawings
taxipom
Hall-Paige conjecture
Hall
;
Paige
✭✭✭
0
Group Theory
mdevos
Complexity of QBF(Bounded Treewidth)
Moshe Y. Vardi
✭✭
0
Logic
»
Finite Model Theory
myvardi
Special M
Kimberling
✭✭
1
Number Theory
vprusso
DIS-PROOF OF BEALS CONJECTURE
✭✭✭
0
Number Theory
»
Additive N.T.
lalitha
Star height problem
Lawrence Eggan C.
✭✭
0
Theoretical Comp. Sci.
porton
Intersection of complete funcoids
Porton
✭✭
0
Topology
porton
Monovalued reloid is a restricted function
Porton
✭✭
0
Topology
porton
Distributivity of composition over union of reloids
Porton
✭✭
0
Topology
porton
Funcoid corresponding to inward reloid
Porton
✭✭
0
Topology
porton
Distributivity of outward reloid over composition of funcoids
Porton
✭✭
0
Topology
porton
Outward reloid corresponding to a funcoid corresponding to convex reloid
Porton
✭✭
0
Topology
porton
Inward reloid corresponding to a funcoid corresponding to convex reloid
Porton
✭✭
0
Topology
porton
Distributivity of union of funcoids corresponding to reloids
Porton
✭✭
0
Topology
porton
Reloid corresponding to funcoid is between outward and inward reloid
Porton
✭✭
0
Topology
porton
Is every regular paratopological group Tychonoff?
unknown
✭✭
0
Topology
porton
Composition of atomic reloids
Porton
✭✭
0
Topology
porton
Atomic reloids are monovalued
Porton
✭✭
0
Topology
porton
1
2
next ›
last »
Navigate
Subject
Algebra
(295)
Analysis
(5)
Combinatorics
(35)
Geometry
(29)
Graph Theory
(228)
Group Theory
(5)
Logic
(10)
Number Theory
(49)
PDEs
(0)
Probability
(1)
Theoretical Comp. Sci.
(13)
Topology
(40)
Unsorted
(1)
Author index
Keyword index
more
Recent Activity
Nowhere-zero flows
Shuffle-Exchange Conjecture
Algebra
Seagull problem
Solution to the Lonely Runner Conjecture
more