Conjecture Let be a simple graph with vertices and list chromatic number . Suppose that and each vertex of is assigned a list of colors. Then at least vertices of can be colored from these lists.
A nowhere-zero -flow on is an orientation of together with a function from the edge set of into the real numbers such that , for all , and . The circular flow number of is inf has a nowhere-zero -flow , and it is denoted by .
A graph with maximum vertex degree is a class 1 graph if its edge chromatic number is .
Conjecture Let be an integer and a -regular graph. If is a class 1 graph, then .
Problem Given a link in , let the symmetry group of be denoted ie: isotopy classes of diffeomorphisms of which preserve , where the isotopies are also required to preserve .
Now let be a hyperbolic link. Assume has the further `Brunnian' property that there exists a component of such that is the unlink. Let be the subgroup of consisting of diffeomorphisms of which preserve together with its orientation, and which preserve the orientation of .
There is a representation given by restricting the diffeomorphism to the . It's known that is always a cyclic group. And is a signed symmetric group -- the wreath product of a symmetric group with .
Conjecture Let be the complete funcoid corresponding to the usual topology on extended real line . Let be the order on this set. Then is a complete funcoid.
Proposition It is easy to prove that is the infinitely small right neighborhood filter of point .
If proved true, the conjecture then can be generalized to a wider class of posets.
Problem Let and be two -uniform hypergraph on the same vertex set . Does there always exist a partition of into classes such that for both , at least hyperedges of meet each of the classes ?
Conjecture A Fermat prime is a Fermat number that is prime. The only known Fermat primes are F_0 =3,F_1=5,F_2=17,F_3 =257 ,F_4=65537 It is unknown if other fermat primes exist.
Let be a class of finite relational structures. We denote by the number of structures in over the labeled set . For any class definable in monadic second-order logic with unary and binary relation symbols, Specker and Blatter showed that, for every , the function is ultimately periodic modulo .
Question Does the Blatter-Specker Theorem hold for ternary relations.
The deck of a graph is the multiset consisting of all unlabelled subgraphs obtained from by deleting a vertex in all possible ways (counted according to multiplicity).
Conjecture If two graphs on vertices have the same deck, then they are isomorphic.
Conjecture For , let be the statement that given any exact -coloring of the edges of a complete countably infinite graph (that is, a coloring with colors all of which must be used at least once), there exists an exactly -colored countably infinite complete subgraph. Then is true if and only if , , or .
Conjecture For which values of and are there bi-colored graphs on vertices and different colors with the property that all the monochromatic colorings have unit weight, and every other coloring cancels out?