Random

The Riemann Hypothesis ★★★★

Author(s): Riemann

The zeroes of the Riemann zeta function that are inside the Critical Strip (i.e. the vertical strip of the complex plane where the real part of the complex variable is in ]0;1[), are actually located on the Critical line ( the vertical line of the complex plane with real part equal to 1/2)

Keywords: Millenium Problems; zeta

2-accessibility of primes ★★

Author(s): Landman; Robertson

Question   Is the set of prime numbers 2-accessible?

Keywords: monochromatic diffsequences; primes

Infinite distributivity of meet over join for a principal funcoid ★★

Author(s): Porton

Conjecture   $ f \sqcap \bigsqcup S = \bigsqcup \langle f \sqcap \rangle^{\ast} S $ for principal funcoid $ f $ and a set $ S $ of funcoids of appropriate sources and destinations.

Keywords: distributivity; principal funcoid

Working Dragon Ball Legends Cheats Generator Online (No Survey) ★★

Author(s):

Working Dragon Ball Legends Cheats Generator Online (No Survey)

Keywords:

Algebraic independence of pi and e ★★★

Author(s):

Conjecture   $ \pi $ and $ e $ are algebraically independent

Keywords: algebraic independence

Chromatic number of associahedron ★★

Author(s): Fabila-Monroy; Flores-Penaloza; Huemer; Hurtado; Urrutia; Wood

Conjecture   Associahedra have unbounded chromatic number.

Keywords: associahedron, graph colouring, chromatic number

Complexity of the H-factor problem. ★★

Author(s): Kühn; Osthus

An $ H $-factor in a graph $ G $ is a set of vertex-disjoint copies of $ H $ covering all vertices of $ G $.

Problem  Let $ c $ be a fixed positive real number and $ H $ a fixed graph. Is it NP-hard to determine whether a graph $ G $ on $ n $ vertices and minimum degree $ cn $ contains and $ H $-factor?

Keywords:

Monochromatic vertex colorings inherited from Perfect Matchings ★★★

Author(s):

Conjecture   For which values of $ n $ and $ d $ are there bi-colored graphs on $ n $ vertices and $ d $ different colors with the property that all the $ d $ monochromatic colorings have unit weight, and every other coloring cancels out?

Keywords:

P vs. NP ★★★★

Author(s): Cook; Levin

Problem   Is P = NP?

Keywords: Complexity Class; Computational Complexity; Millenium Problems; NP; P; polynomial algorithm

FarmVille 2 Coins Farm Bucks Cheats in a few minutes new 2024 (No Survey) ★★

Author(s):

FarmVille 2 Coins Farm Bucks Cheats in a few minutes new 2024 (No Survey)

Keywords:

Minimum number of arc-disjoint transitive subtournaments of order 3 in a tournament ★★

Author(s): Yuster

Conjecture   If $ T $ is a tournament of order $ n $, then it contains $ \left \lceil n(n-1)/6 - n/3\right\rceil $ arc-disjoint transitive subtournaments of order 3.

Keywords:

Edge-Unfolding Convex Polyhedra ★★

Author(s): Shephard

Conjecture   Every convex polyhedron has a (nonoverlapping) edge unfolding.

Keywords: folding; nets

Large induced forest in a planar graph. ★★

Author(s): Abertson; Berman

Conjecture   Every planar graph on $ n $ verices has an induced forest with at least $ n/2 $ vertices.

Keywords:

Real Racing 3 Cheats Generator Working 2024 (Real Racing 3 Generator) ★★

Author(s):

Real Racing 3 Cheats Generator Working 2024 (Real Racing 3 Generator)

Keywords:

Mastering Subway Surfers: Your Ultimate Guide to Cheats, Hacks, and Generators ★★

Author(s):

Conjecture  

Keywords:

Elementary symmetric of a sum of matrices ★★★

Author(s):

Problem  

Given a Matrix $ A $, the $ k $-th elementary symmetric function of $ A $, namely $ S_k(A) $, is defined as the sum of all $ k $-by-$ k $ principal minors.

Find a closed expression for the $ k $-th elementary symmetric function of a sum of N $ n $-by-$ n $ matrices, with $ 0\le N\le k\le n $ by using partitions.

Keywords:

Lucas Numbers Modulo m ★★

Author(s):

Conjecture   The sequence {L(n) mod m}, where L(n) are the Lucas numbers, contains a complete residue system modulo m if and only if m is one of the following: 2, 4, 6, 7, 14, 3^k, k >=1.

Keywords: Lucas numbers

Perfect 2-error-correcting codes over arbitrary finite alphabets. ★★

Author(s):

Conjecture   Does there exist a nontrivial perfect 2-error-correcting code over any finite alphabet, other than the ternary Golay code?

Keywords: 2-error-correcting; code; existence; perfect; perfect code

Invariant subspace problem ★★★

Author(s):

Problem   Does every bounded linear operator on an infinite-dimensional separable Hilbert space have a non-trivial closed invariant subspace?

Keywords: subspace

Subgraph of large average degree and large girth. ★★

Author(s): Thomassen

Conjecture   For all positive integers $ g $ and $ k $, there exists an integer $ d $ such that every graph of average degree at least $ d $ contains a subgraph of average degree at least $ k $ and girth greater than $ g $.

Keywords:

Raid Shadow Legends Generator Cheats Free 2024 in 5 minutes (New Generator Cheats Raid Shadow Legends) ★★

Author(s):

Raid Shadow Legends Generator Cheats Free 2024 in 5 minutes (New Generator Cheats Raid Shadow Legends)

Keywords:

Hamiltonian paths and cycles in vertex transitive graphs ★★★

Author(s): Lovasz

Problem   Does every connected vertex-transitive graph have a Hamiltonian path?

Keywords: cycle; hamiltonian; path; vertex-transitive

Seagull problem ★★★

Author(s): Seymour

Conjecture   Every $ n $ vertex graph with no independent set of size $ 3 $ has a complete graph on $ \ge \frac{n}{2} $ vertices as a minor.

Keywords: coloring; complete graph; minor

Switching reconstruction conjecture ★★

Author(s): Stanley

Conjecture   Every simple graph on five or more vertices is switching-reconstructible.

Keywords: reconstruction

eFootball 2023 Cheats Generator Unlimited IOS Android No Survey 2024 (Reedem Today) ★★

Author(s):

eFootball 2023 Cheats Generator Unlimited IOS Android No Survey 2024 (Reedem Today)

Keywords:

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method) ★★

Author(s):

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method)

Keywords:

Free Gardenscapes Coins Stars Cheats Pro Apk Online (2024) ★★

Author(s):

Free Gardenscapes Coins Stars Cheats Pro Apk Online (2024)

Keywords:

Unit vector flows ★★

Author(s): Jain

Conjecture   For every graph $ G $ without a bridge, there is a flow $ \phi : E(G) \rightarrow S^2 = \{ x \in {\mathbb R}^3 : |x| = 1 \} $.

Conjecture   There exists a map $ q:S^2 \rightarrow \{-4,-3,-2,-1,1,2,3,4\} $ so that antipodal points of $ S^2 $ receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.

Keywords: nowhere-zero flow

Edge list coloring conjecture ★★★

Author(s):

Conjecture   Let $ G $ be a loopless multigraph. Then the edge chromatic number of $ G $ equals the list edge chromatic number of $ G $.

Keywords:

Dense rational distance sets in the plane ★★★

Author(s): Ulam

Problem   Does there exist a dense set $ S \subseteq {\mathbb R}^2 $ so that all pairwise distances between points in $ S $ are rational?

Keywords: integral distance; rational distance

Snevily's conjecture ★★★

Author(s): Snevily

Conjecture   Let $ G $ be an abelian group of odd order and let $ A,B \subseteq G $ satisfy $ |A| = |B| = k $. Then the elements of $ A $ and $ B $ may be ordered $ A = \{a_1,\ldots,a_k\} $ and $ B = \{b_1,\ldots,b_k\} $ so that the sums $ a_1+b_1, a_2+b_2 \ldots, a_k + b_k $ are pairwise distinct.

Keywords: addition table; latin square; transversal

Convex uniform 5-polytopes ★★

Author(s):

Problem   Enumerate all convex uniform 5-polytopes.

Keywords:

Nonseparating planar continuum ★★

Author(s):

Conjecture   Does any path-connected, compact set in the plane which does not separate the plane have the fixed point property?

A set has the fixed point property if every continuous map from it into itself has a fixed point.

Keywords: fixed point

Acyclic list colouring of planar graphs. ★★★

Author(s): Borodin; Fon-Der-Flasss; Kostochka; Raspaud; Sopena

Conjecture   Every planar graph is acyclically 5-choosable.

Keywords:

The Borodin-Kostochka Conjecture ★★

Author(s): Borodin; Kostochka

Conjecture   Every graph with maximum degree $ \Delta \geq 9 $ has chromatic number at most $ \max\{\Delta-1, \omega\} $.

Keywords:

Idle Miner Tycoon Cheats Generator 2024 Free No Verification (New.updated) ★★

Author(s):

Idle Miner Tycoon Cheats Generator 2024 Free No Verification (New.updated)

Keywords:

Multicolour Erdős--Hajnal Conjecture ★★★

Author(s): Erdos; Hajnal

Conjecture   For every fixed $ k\geq2 $ and fixed colouring $ \chi $ of $ E(K_k) $ with $ m $ colours, there exists $ \varepsilon>0 $ such that every colouring of the edges of $ K_n $ contains either $ k $ vertices whose edges are coloured according to $ \chi $ or $ n^\varepsilon $ vertices whose edges are coloured with at most $ m-1 $ colours.

Keywords: ramsey theory

House Of Fun Cheats Generator (iOS Android 2024) ★★

Author(s):

House Of Fun Cheats Generator (iOS Android 2024)

Keywords:

Marvel Strike Force Cheats Generator Unlimited IOS And Android No Survey 2024 (free!!) ★★

Author(s):

Marvel Strike Force Cheats Generator Unlimited IOS And Android No Survey 2024 (free!!)

Keywords:

Candy Crush Saga Golds Lives Cheats 2024 Update Cheat (Verified) ★★

Author(s):

Candy Crush Saga Golds Lives Cheats 2024 Update Cheat (Verified)

Keywords:

The Two Color Conjecture ★★

Author(s): Neumann-Lara

Conjecture   If $ G $ is an orientation of a simple planar graph, then there is a partition of $ V(G) $ into $ \{X_1,X_2\} $ so that the graph induced by $ X_i $ is acyclic for $ i=1,2 $.

Keywords: acyclic; digraph; planar

Hamiltonian cycles in line graphs of infinite graphs ★★

Author(s): Georgakopoulos

Conjecture  
    \item If $ G $ is a 4-edge-connected locally finite graph, then its line graph is hamiltonian. \item If the line graph $ L(G) $ of a locally finite graph $ G $ is 4-connected, then $ L(G) $ is hamiltonian.

Keywords: hamiltonian; infinite graph; line graphs

Funcoidal products inside an inward reloid ★★

Author(s): Porton

Conjecture   (solved) If $ a \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} b \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f $ then $ a \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} b \subseteq f $ for every funcoid $ f $ and atomic f.o. $ a $ and $ b $ on the source and destination of $ f $ correspondingly.

A stronger conjecture:

Conjecture   If $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f $ then $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} \mathcal{B} \subseteq f $ for every funcoid $ f $ and $ \mathcal{A} \in \mathfrak{F} \left( \ensuremath{\operatorname{Src}}f \right) $, $ \mathcal{B} \in \mathfrak{F} \left( \ensuremath{\operatorname{Dst}}f \right) $.

Keywords: inward reloid

Covering systems with big moduli ★★

Author(s): Erdos; Selfridge

Problem   Does for every integer $ N $ exist a covering system with all moduli distinct and at least equal to~$ N $?

Keywords: covering system

Dragon City Cheats Generator 2023-2024 Edition (Verified) ★★

Author(s):

Dragon City Cheats Generator 2023-2024 Edition (Verified)

Keywords:

Graph product of multifuncoids ★★

Author(s): Porton

Conjecture   Let $ F $ is a family of multifuncoids such that each $ F_i $ is of the form $ \lambda j \in N \left( i \right) : \mathfrak{F} \left( U_j \right) $ where $ N \left( i \right) $ is an index set for every $ i $ and $ U_j $ is a set for every $ j $. Let every $ F_i = E^{\ast} f_i $ for some multifuncoid $ f_i $ of the form $ \lambda j \in N \left( i \right) : \mathfrak{P} \left( U_j \right) $ regarding the filtrator $ \left( \prod_{j \in N \left( i \right)} \mathfrak{F} \left( U_j \right) ; \prod_{j \in N \left( i \right)} \mathfrak{P} \left( U_j \right) \right) $. Let $ H $ is a graph-composition of $ F $ (regarding some partition $ G $ and external set $ Z $). Then there exist a multifuncoid $ h $ of the form $ \lambda j \in Z : \mathfrak{P} \left( U_j \right) $ such that $ H = E^{\ast} h $ regarding the filtrator $ \left( \prod_{j \in Z} \mathfrak{F} \left( U_j \right) ; \prod_{j \in Z} \mathfrak{P} \left( U_j \right) \right) $.

Keywords: graph-product; multifuncoid

Antichains in the cycle continuous order ★★

Author(s): DeVos

If $ G $,$ H $ are graphs, a function $ f : E(G) \rightarrow E(H) $ is called cycle-continuous if the pre-image of every element of the (binary) cycle space of $ H $ is a member of the cycle space of $ G $.

Problem   Does there exist an infinite set of graphs $ \{G_1,G_2,\ldots \} $ so that there is no cycle continuous mapping between $ G_i $ and $ G_j $ whenever $ i \neq j $ ?

Keywords: antichain; cycle; poset

Free Kim Kardashian Hollywood Cash Stars Cheats Pro Apk 2024 (Android Ios) ★★

Author(s):

Free Kim Kardashian Hollywood Cash Stars Cheats Pro Apk 2024 (Android Ios)

Keywords:

Hello ★★

Author(s):

Hello

http://www.openproblemgarden.org/op/hello

Keywords:

Direct proof of a theorem about compact funcoids ★★

Author(s): Porton

Conjecture   Let $ f $ is a $ T_1 $-separable (the same as $ T_2 $ for symmetric transitive) compact funcoid and $ g $ is a uniform space (reflexive, symmetric, and transitive endoreloid) such that $ ( \mathsf{\tmop{FCD}}) g = f $. Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.

The direct proof may be constructed by correcting all errors an omissions in this draft article.

Direct proof could be better because with it we would get a little more general statement like this:

Conjecture   Let $ f $ be a $ T_1 $-separable compact reflexive symmetric funcoid and $ g $ be a reloid such that
    \item $ ( \mathsf{\tmop{FCD}}) g = f $; \item $ g \circ g^{- 1} \sqsubseteq g $.

Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

Keywords: compact space; compact topology; funcoid; reloid; uniform space; uniformity