Random

2-accessibility of primes ★★

Author(s): Landman; Robertson

Question   Is the set of prime numbers 2-accessible?

Keywords: monochromatic diffsequences; primes

Geodesic cycles and Tutte's Theorem ★★

Author(s): Georgakopoulos; Sprüssel

Problem   If $ G $ is a $ 3 $-connected finite graph, is there an assignment of lengths $ \ell: E(G) \to \mathb R^+ $ to the edges of $ G $, such that every $ \ell $-geodesic cycle is peripheral?

Keywords: cycle space; geodesic cycles; peripheral cycles

Generalised Empty Hexagon Conjecture ★★

Author(s): Wood

Conjecture   For each $ \ell\geq3 $ there is an integer $ f(\ell) $ such that every set of at least $ f(\ell) $ points in the plane contains $ \ell $ collinear points or an empty hexagon.

Keywords: empty hexagon

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method) ★★

Author(s):

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method)

Keywords:

P vs. BPP ★★★

Author(s): Folklore

Conjecture   Can all problems that can be computed by a probabilistic Turing machine (with error probability < 1/3) in polynomial time be solved by a deterministic Turing machine in polynomial time? That is, does P = BPP?

Keywords: BPP; circuit complexity; pseudorandom generators

Geometry Dash Free Gold Coins Stars Cheats 2024 (FREE!) ★★

Author(s):

Geometry Dash Free Gold Coins Stars Cheats 2024 (FREE!)

Keywords:

Kriesell's Conjecture ★★

Author(s): Kriesell

Conjecture   Let $ G $ be a graph and let $ T\subseteq V(G) $ such that for any pair $ u,v\in T $ there are $ 2k $ edge-disjoint paths from $ u $ to $ v $ in $ G $. Then $ G $ contains $ k $ edge-disjoint trees, each of which contains $ T $.

Keywords: Disjoint paths; edge-connectivity; spanning trees

Raid Shadow Legends Cheats Generator Android Ios 2024 Cheats Generator (HOT) ★★

Author(s):

Raid Shadow Legends Cheats Generator Android Ios 2024 Cheats Generator (HOT)

Keywords:

S(S(f)) = S(f) for reloids ★★

Author(s): Porton

Question   $ S(S(f)) = S(f) $ for every endo-reloid $ f $?

Keywords: reloid

Average diameter of a bounded cell of a simple arrangement ★★

Author(s): Deza; Terlaky; Zinchenko

Conjecture   The average diameter of a bounded cell of a simple arrangement defined by $ n $ hyperplanes in dimension $ d $ is not greater than $ d $.

Keywords: arrangement; diameter; polytope

New-mathod! Free Kim Kardashian Hollywood Cash Stars Cheats 2024 (No Human Verification) ★★

Author(s):

New-mathod! Free Kim Kardashian Hollywood Cash Stars Cheats 2024 (No Human Verification)

Keywords:

V-Bucks Generator Free 2024 in 5 minutes (New Generator V-Bucks) ★★

Author(s):

V-Bucks Generator Free 2024 in 5 minutes (New Generator V-Bucks)

Keywords:

Minimal graphs with a prescribed number of spanning trees ★★

Author(s): Azarija; Skrekovski

Conjecture   Let $ n \geq 3 $ be an integer and let $ \alpha(n) $ denote the least integer $ k $ such that there exists a simple graph on $ k $ vertices having precisely $ n $ spanning trees. Then $  \alpha(n) = o(\log{n}). $

Keywords: number of spanning trees, asymptotics

Call Of Duty Mobile Cheats Generator 2024 (FREE!) ★★

Author(s):

Call Of Duty Mobile Cheats Generator 2024 (FREE!)

Keywords:

Match Masters Free Coins Cheats 2024 (FREE!) ★★

Author(s):

Match Masters Free Coins Cheats 2024 (FREE!)

Keywords:

Multicolour Erdős--Hajnal Conjecture ★★★

Author(s): Erdos; Hajnal

Conjecture   For every fixed $ k\geq2 $ and fixed colouring $ \chi $ of $ E(K_k) $ with $ m $ colours, there exists $ \varepsilon>0 $ such that every colouring of the edges of $ K_n $ contains either $ k $ vertices whose edges are coloured according to $ \chi $ or $ n^\varepsilon $ vertices whose edges are coloured with at most $ m-1 $ colours.

Keywords: ramsey theory

Realisation problem for the space of knots in the 3-sphere ★★

Author(s): Budney

Problem   Given a link $ L $ in $ S^3 $, let the symmetry group of $ L $ be denoted $ Sym(L) = \pi_0 Diff(S^3,L) $ ie: isotopy classes of diffeomorphisms of $ S^3 $ which preserve $ L $, where the isotopies are also required to preserve $ L $.

Now let $ L $ be a hyperbolic link. Assume $ L $ has the further `Brunnian' property that there exists a component $ L_0 $ of $ L $ such that $ L \setminus L_0 $ is the unlink. Let $ A_L $ be the subgroup of $ Sym(L) $ consisting of diffeomorphisms of $ S^3 $ which preserve $ L_0 $ together with its orientation, and which preserve the orientation of $ S^3 $.

There is a representation $ A_L \to \pi_0 Diff(L \setminus L_0) $ given by restricting the diffeomorphism to the $ L \setminus L_0 $. It's known that $ A_L $ is always a cyclic group. And $ \pi_0 Diff(L \setminus L_0) $ is a signed symmetric group -- the wreath product of a symmetric group with $ \mathbb Z_2 $.

Problem: What representations can be obtained?

Keywords: knot space; symmetry

Highly arc transitive two ended digraphs ★★

Author(s): Cameron; Praeger; Wormald

Conjecture   If $ G $ is a highly arc transitive digraph with two ends, then every tile of $ G $ is a disjoint union of complete bipartite graphs.

Keywords: arc transitive; digraph; infinite graph

The robustness of the tensor product ★★★

Author(s): Ben-Sasson; Sudan

Problem   Given two codes $ R,C $, their Tensor Product $ R \otimes C $ is the code that consists of the matrices whose rows are codewords of $ R $ and whose columns are codewords of $ C $. The product $ R \otimes C $ is said to be robust if whenever a matrix $ M $ is far from $ R \otimes C $, the rows (columns) of $ M $ are far from $ R $ ($ C $, respectively).

The problem is to give a characterization of the pairs $ R,C $ whose tensor product is robust.

Keywords: codes; coding; locally testable; robustness

Roller Coaster permutations ★★★

Author(s): Ahmed; Snevily

Let $ S_n $ denote the set of all permutations of $ [n]=\set{1,2,\ldots,n} $. Let $ i(\pi) $ and $ d(\pi) $ denote respectively the number of increasing and the number of decreasing sequences of contiguous numbers in $ \pi $. Let $ X(\pi) $ denote the set of subsequences of $ \pi $ with length at least three. Let $ t(\pi) $ denote $ \sum_{\tau\in X(\pi)}(i(\tau)+d(\tau)) $.

A permutation $ \pi\in S_n $ is called a Roller Coaster permutation if $ t(\pi)=\max_{\tau\in S_n}t(\tau) $. Let $ RC(n) $ be the set of all Roller Coaster permutations in $ S_n $.

Conjecture   For $ n\geq 3 $,
    \item If $ n=2k $, then $ |RC(n)|=4 $. \item If $ n=2k+1 $, then $ |RC(n)|=2^j $ with $ j\leq k+1 $.
Conjecture  (Odd Sum conjecture)   Given $ \pi\in RC(n) $,
    \item If $ n=2k+1 $, then $ \pi_j+\pi_{n-j+1} $ is odd for $ 1\leq j\leq k $. \item If $ n=2k $, then $ \pi_j + \pi_{n-j+1} = 2k+1 $ for all $ 1\leq j\leq k $.

Keywords:

Colouring the square of a planar graph ★★

Author(s): Wegner

Conjecture   Let $ G $ be a planar graph of maximum degree $ \Delta $. The chromatic number of its square is
    \item at most $ 7 $ if $ \Delta =3 $, \item at most $ \Delta+5 $ if $ 4\leq\Delta\leq 7 $, \item at most $ \left\lfloor\frac32\,\Delta\right\rfloor+1 $ if $ \Delta\ge8 $.

Keywords:

Every prism over a 3-connected planar graph is hamiltonian. ★★

Author(s): Kaiser; Král; Rosenfeld; Ryjácek; Voss

Conjecture   If $ G $ is a $ 3 $-connected planar graph, then $ G\square K_2 $ has a Hamilton cycle.

Keywords:

Bleach Brave Souls Cheats Generator Free 2024 No Human Verification (New Update) ★★

Author(s):

Bleach Brave Souls Cheats Generator Free 2024 No Human Verification (New Update)

Keywords:

Partitioning edge-connectivity ★★

Author(s): DeVos

Question   Let $ G $ be an $ (a+b+2) $-edge-connected graph. Does there exist a partition $ \{A,B\} $ of $ E(G) $ so that $ (V,A) $ is $ a $-edge-connected and $ (V,B) $ is $ b $-edge-connected?

Keywords: edge-coloring; edge-connectivity

Non-edges vs. feedback edge sets in digraphs ★★★

Author(s): Chudnovsky; Seymour; Sullivan

For any simple digraph $ G $, we let $ \gamma(G) $ be the number of unordered pairs of nonadjacent vertices (i.e. the number of non-edges), and $ \beta(G) $ be the size of the smallest feedback edge set.

Conjecture  If $ G $ is a simple digraph without directed cycles of length $ \le 3 $, then $ \beta(G) \le \frac{1}{2} \gamma(G) $.

Keywords: acyclic; digraph; feedback edge set; triangle free

Bingo Blitz Cheats Generator iOS Android (Current 2024 Generator) ★★

Author(s):

Bingo Blitz Cheats Generator iOS Android (Current 2024 Generator)

Keywords:

Circular flow number of regular class 1 graphs ★★

Author(s): Steffen

A nowhere-zero $ r $-flow $ (D(G),\phi) $ on $ G $ is an orientation $ D $ of $ G $ together with a function $ \phi $ from the edge set of $ G $ into the real numbers such that $ 1 \leq |\phi(e)| \leq r-1 $, for all $ e \in E(G) $, and $ \sum_{e \in E^+(v)}\phi(e) = \sum_{e \in E^-(v)}\phi(e), \textrm{ for all } v \in V(G) $. The circular flow number of $ G $ is inf$ \{ r | G $ has a nowhere-zero $ r $-flow $ \} $, and it is denoted by $ F_c(G) $.

A graph with maximum vertex degree $ k $ is a class 1 graph if its edge chromatic number is $ k $.

Conjecture   Let $ t \geq 1 $ be an integer and $ G $ a $ (2t+1) $-regular graph. If $ G $ is a class 1 graph, then $ F_c(G) \leq 2 + \frac{2}{t} $.

Keywords: nowhere-zero flow, edge-colorings, regular graphs

The Sims Mobile Cheats Generator 2024 New Working Cheats Generator (New Method) ★★

Author(s):

The Sims Mobile Cheats Generator 2024 New Working Cheats Generator (New Method)

Keywords:

Finding k-edge-outerplanar graph embeddings ★★

Author(s): Bentz

Conjecture   It has been shown that a $ k $-outerplanar embedding for which $ k $ is minimal can be found in polynomial time. Does a similar result hold for $ k $-edge-outerplanar graphs?

Keywords: planar graph; polynomial algorithm

Outward reloid of composition vs composition of outward reloids ★★

Author(s): Porton

Conjecture   For every composable funcoids $ f $ and $ g $ $$(\mathsf{RLD})_{\mathrm{out}}(g\circ f)\sqsupseteq(\mathsf{RLD})_{\mathrm{out}}g\circ(\mathsf{RLD})_{\mathrm{out}}f.$$

Keywords: outward reloid

Geometry Dash Gold Coins Stars Cheats 2024 Update (FREE!!) ★★

Author(s):

Geometry Dash Gold Coins Stars Cheats 2024 Update (FREE!!)

Keywords:

Free Kim Kardashian Hollywood Cash Stars Cheats Pro Apk 2024 (Android Ios) ★★

Author(s):

Free Kim Kardashian Hollywood Cash Stars Cheats Pro Apk 2024 (Android Ios)

Keywords:

Graphs with a forbidden induced tree are chi-bounded ★★★

Author(s): Gyarfas

Say that a family $ {\mathcal F} $ of graphs is $ \chi $-bounded if there exists a function $ f: {\mathbb N} \rightarrow {\mathbb N} $ so that every $ G \in {\mathcal F} $ satisfies $ \chi(G) \le f (\omega(G)) $.

Conjecture   For every fixed tree $ T $, the family of graphs with no induced subgraph isomorphic to $ T $ is $ \chi $-bounded.

Keywords: chi-bounded; coloring; excluded subgraph; tree

Edge-Unfolding Convex Polyhedra ★★

Author(s): Shephard

Conjecture   Every convex polyhedron has a (nonoverlapping) edge unfolding.

Keywords: folding; nets

World of Warships Cheats Generator Fully Works No Survey Cheats Generator (2024) ★★

Author(s):

World of Warships Cheats Generator Fully Works No Survey Cheats Generator (2024)

Keywords:

Jurassic Park Builder Cheats Generator No Human Verification No Survey (Method 2024) ★★

Author(s):

Jurassic Park Builder Cheats Generator No Human Verification No Survey (Method 2024)

Keywords:

Raid Shadow Legends Cheats Generator Unlimited IOS And Android No Survey 2024 (free!!) ★★

Author(s):

Raid Shadow Legends Cheats Generator Unlimited IOS And Android No Survey 2024 (free!!)

Keywords:

Circular flow numbers of $r$-graphs ★★

Author(s): Steffen

A nowhere-zero $ r $-flow $ (D(G),\phi) $ on $ G $ is an orientation $ D $ of $ G $ together with a function $ \phi $ from the edge set of $ G $ into the real numbers such that $ 1 \leq |\phi(e)| \leq r-1 $, for all $ e \in E(G) $, and $ \sum_{e \in E^+(v)}\phi(e) = \sum_{e \in E^-(v)}\phi(e), \textrm{ for all } v \in V(G) $.

A $ (2t+1) $-regular graph $ G $ is a $ (2t+1) $-graph if $ |\partial_G(X)| \geq 2t+1 $ for every $ X \subseteq V(G) $ with $ |X| $ odd.

Conjecture   Let $ t > 1 $ be an integer. If $ G $ is a $ (2t+1) $-graph, then $ F_c(G) \leq 2 + \frac{2}{t} $.

Keywords: flow conjectures; nowhere-zero flows

"Working Cheats" Apex Legends Coins Generator Ios Android 2024 ★★

Author(s):

"Working Cheats" Apex Legends Coins Generator Ios Android 2024

Keywords:

Family Island Cheats Generator 2023-2024 (No Human Verification) ★★

Author(s):

Family Island Cheats Generator 2023-2024 (No Human Verification)

Keywords:

Free Generator Sims FreePlay Working Simoleons Life Points and Social Points Cheats (Sims FreePlay Generator) ★★

Author(s):

Free Generator Sims FreePlay Working Simoleons Life Points and Social Points Cheats (Sims FreePlay Generator)

Keywords:

Inverse Galois Problem ★★★★

Author(s): Hilbert

Conjecture   Every finite group is the Galois group of some finite algebraic extension of $ \mathbb Q $.

Keywords:

Hall-Paige conjecture (Solved) ★★

Author(s):

Hall-Paige conjecture (Solved)

Keywords:

Friendly partitions ★★

Author(s): DeVos

A friendly partition of a graph is a partition of the vertices into two sets so that every vertex has at least as many neighbours in its own class as in the other.

Problem   Is it true that for every $ r $, all but finitely many $ r $-regular graphs have friendly partitions?

Keywords: edge-cut; partition; regular

Complexity of the H-factor problem. ★★

Author(s): Kühn; Osthus

An $ H $-factor in a graph $ G $ is a set of vertex-disjoint copies of $ H $ covering all vertices of $ G $.

Problem  Let $ c $ be a fixed positive real number and $ H $ a fixed graph. Is it NP-hard to determine whether a graph $ G $ on $ n $ vertices and minimum degree $ cn $ contains and $ H $-factor?

Keywords:

Woodall's Conjecture ★★★

Author(s): Woodall

Conjecture   If $ G $ is a directed graph with smallest directed cut of size $ k $, then $ G $ has $ k $ disjoint dijoins.

Keywords: digraph; packing

r-regular graphs are not uniquely hamiltonian. ★★★

Author(s): Sheehan

Conjecture   If $ G $ is a finite $ r $-regular graph, where $ r > 2 $, then $ G $ is not uniquely hamiltonian.

Keywords: hamiltonian; regular; uniquely hamiltonian

MacEachen Conjecture

Author(s): McEachen

Conjecture   Every odd prime number must either be adjacent to, or a prime distance away from a primorial or primorial product.

Keywords: primality; prime distribution

Approximation Ratio for Maximum Edge Disjoint Paths problem ★★

Author(s): Bentz

Conjecture   Can the approximation ratio $ O(\sqrt{n}) $ be improved for the Maximum Edge Disjoint Paths problem (MaxEDP) in planar graphs or can an inapproximability result stronger than $ \mathcal{APX} $-hardness?

Keywords: approximation algorithms; Disjoint paths; planar graph; polynomial algorithm

Working Generator Pokemon Go Pokecoins Cheats Android Ios 2024 (HOT) ★★

Author(s):

Working Generator Pokemon Go Pokecoins Cheats Android Ios 2024 (HOT)

Keywords: