The zeroes of the Riemann zeta function that are inside the Critical Strip (i.e. the vertical strip of the complex plane where the real part of the complex variable is in ]0;1[), are actually located on the Critical line ( the vertical line of the complex plane with real part equal to 1/2)
An -factor in a graph is a set of vertex-disjoint copies of covering all vertices of .
Problem Let be a fixed positive real number and a fixed graph. Is it NP-hard to determine whether a graph on vertices and minimum degree contains and -factor?
Conjecture For which values of and are there bi-colored graphs on vertices and different colors with the property that all the monochromatic colorings have unit weight, and every other coloring cancels out?
Conjecture The sequence {L(n) mod m}, where L(n) are the Lucas numbers, contains a complete residue system modulo m if and only if m is one of the following: 2, 4, 6, 7, 14, 3^k, k >=1.
Conjecture For all positive integers and , there exists an integer such that every graph of average degree at least contains a subgraph of average degree at least and girth greater than .
Conjecture For every graph without a bridge, there is a flow .
Conjecture There exists a map so that antipodal points of receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.
Conjecture For every fixed and fixed colouring of with colours, there exists such that every colouring of the edges of contains either vertices whose edges are coloured according to or vertices whose edges are coloured with at most colours.
Conjecture \item If is a 4-edge-connected locally finite graph, then its line graph is hamiltonian. \item If the line graph of a locally finite graph is 4-connected, then is hamiltonian.
Conjecture Let is a family of multifuncoids such that each is of the form where is an index set for every and is a set for every . Let every for some multifuncoid of the form regarding the filtrator . Let is a graph-composition of (regarding some partition and external set ). Then there exist a multifuncoid of the form such that regarding the filtrator .
If , are graphs, a function is called cycle-continuous if the pre-image of every element of the (binary) cycle space of is a member of the cycle space of .
Problem Does there exist an infinite set of graphs so that there is no cycle continuous mapping between and whenever ?
Conjecture Let is a -separable (the same as for symmetric transitive) compact funcoid and is a uniform space (reflexive, symmetric, and transitive endoreloid) such that . Then .
The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.
The direct proof may be constructed by correcting all errors an omissions in this draft article.
Direct proof could be better because with it we would get a little more general statement like this:
Conjecture Let be a -separable compact reflexive symmetric funcoid and be a reloid such that \item ; \item .