Random

Mastering Subway Surfers: The Ultimate Guide to Cheats, Hacks, and Generators ★★

Author(s):

Mastering Subway Surfers: The Ultimate Guide to Cheats, Hacks, and Generators

Keywords:

Jacob Palis Conjecture(Finitude of Attractors)(Dynamical Systems) ★★★★

Author(s):

Conjecture   Let $ Diff^{r}(M)  $ be the space of $ C^{r} $ Diffeomorphisms on the connected , compact and boundaryles manifold M and $ \chi^{r}(M) $ the space of $ C^{r} $ vector fields. There is a dense set $ D\subset Diff^{r}(M) $ ($ D\subset \chi^{r}(M) $ ) such that $ \forall f\in D $ exhibit a finite number of attractor whose basins cover Lebesgue almost all ambient space $ M $

This is a very Deep and Hard problem in Dynamical Systems . It present the dream of the dynamicist mathematicians .

Keywords: Attractors , basins, Finite

5-local-tensions ★★

Author(s): DeVos

Conjecture   There exists a fixed constant $ c $ (probably $ c=4 $ suffices) so that every embedded (loopless) graph with edge-width $ \ge c $ has a 5-local-tension.

Keywords: coloring; surface; tension

FarmVille 2 Unlimited Coins Farm Bucks Cheats 2024 (WORKING IN 5 SECOND) ★★

Author(s):

FarmVille 2 Unlimited Coins Farm Bucks Cheats 2024 (WORKING IN 5 SECOND)

Keywords:

Bingo Blitz Cheats Generator Unlimited No Jailbreak (Premium) ★★

Author(s):

Bingo Blitz Cheats Generator Unlimited No Jailbreak (Premium)

Keywords:

Rainbow Six Siege Cheats Generator Latest Version 2024 New Cheats Generator (Unique) ★★

Author(s):

Rainbow Six Siege Cheats Generator Latest Version 2024 New Cheats Generator (Unique)

Keywords:

Lords Mobile Working Cheats Gems Coins Generator (NEW AND FREE) ★★

Author(s):

Lords Mobile Working Cheats Gems Coins Generator (NEW AND FREE)

Keywords:

Does the chromatic symmetric function distinguish between trees? ★★

Author(s): Stanley

Problem   Do there exist non-isomorphic trees which have the same chromatic symmetric function?

Keywords: chromatic polynomial; symmetric function; tree

Stable set meeting all longest directed paths. ★★

Author(s): Laborde; Payan; Xuong N.H.

Conjecture   Every digraph has a stable set meeting all longest directed paths

Keywords:

SimCity BuildIt Cheats Generator 2024 (No Human Verification) ★★

Author(s):

SimCity BuildIt Cheats Generator 2024 (No Human Verification)

Keywords:

Jurassic World Alive Coins Cash Cheats 2024 Update Cheat (Verified) ★★

Author(s):

Jurassic World Alive Coins Cash Cheats 2024 Update Cheat (Verified)

Keywords:

Antidirected trees in digraphs ★★

Author(s): Addario-Berry; Havet; Linhares Sales; Reed; Thomassé

An antidirected tree is an orientation of a tree in which every vertex has either indegree 0 or outdergree 0.

Conjecture   Let $ D $ be a digraph. If $ |A(D)| > (k-2) |V(D)| $, then $ D $ contains every antidirected tree of order $ k $.

Keywords:

Hungry Shark World Cheats Generator 2024 (Legal) ★★

Author(s):

Hungry Shark World Cheats Generator 2024 (Legal)

Keywords:

Negative association in uniform forests ★★

Author(s): Pemantle

Conjecture   Let $ G $ be a finite graph, let $ e,f \in E(G) $, and let $ F $ be the edge set of a forest chosen uniformly at random from all forests of $ G $. Then \[ {\mathbb P}(e \in F \mid f \in F}) \le {\mathbb P}(e \in F) \]

Keywords: forest; negative association

Are all Fermat Numbers square-free? ★★★

Author(s):

Conjecture   Are all Fermat Numbers \[ F_n  = 2^{2^{n } }  + 1 \] Square-Free?

Keywords:

SimCity BuildIt Generator Cheats Unlimited Resources No Jailbreak (Premium Orginal Generator) ★★

Author(s):

SimCity BuildIt Generator Cheats Unlimited Resources No Jailbreak (Premium Orginal Generator)

Keywords:

Divisibility of central binomial coefficients ★★

Author(s): Graham

Problem  (1)   Prove that there exist infinitely many positive integers $ n $ such that $$\gcd({2n\choose n}, 3\cdot 5\cdot 7) = 1.$$
Problem  (2)   Prove that there exists only a finite number of positive integers $ n $ such that $$\gcd({2n\choose n}, 3\cdot 5\cdot 7\cdot 11) = 1.$$

Keywords:

3-Colourability of Arrangements of Great Circles ★★

Author(s): Felsner; Hurtado; Noy; Streinu

Consider a set $ S $ of great circles on a sphere with no three circles meeting at a point. The arrangement graph of $ S $ has a vertex for each intersection point, and an edge for each arc directly connecting two intersection points. So this arrangement graph is 4-regular and planar.

Conjecture   Every arrangement graph of a set of great circles is $ 3 $-colourable.

Keywords: arrangement graph; graph coloring

War Machines Coins Diamonds Cheats 2024 (iOS Android) ★★

Author(s):

Conjecture  

Keywords:

Hall-Paige conjecture (Solved) ★★

Author(s):

Hall-Paige conjecture (Solved)

Keywords:

One-way functions exist ★★★★

Author(s):

Conjecture   One-way functions exist.

Keywords: one way function

Apex Legends Coins Cheats 2024 (Ios Android) ★★

Author(s):

Apex Legends Coins Cheats 2024 (Ios Android)

Keywords:

Monochromatic reachability or rainbow triangles ★★★

Author(s): Sands; Sauer; Woodrow

In an edge-colored digraph, we say that a subgraph is rainbow if all its edges have distinct colors, and monochromatic if all its edges have the same color.

Problem   Let $ G $ be a tournament with edges colored from a set of three colors. Is it true that $ G $ must have either a rainbow directed cycle of length three or a vertex $ v $ so that every other vertex can be reached from $ v $ by a monochromatic (directed) path?

Keywords: digraph; edge-coloring; tournament

War Thunder Unlimited Golden Eagles Cheats Generator 2024 (fresh strategy) ★★

Author(s):

War Thunder Unlimited Golden Eagles Cheats Generator 2024 (fresh strategy)

Keywords:

Convex Equipartitions with Extreme Perimeter ★★

Author(s): Nandakumar

To divide a given 2D convex region C into a specified number n of convex pieces all of equal area (perimeters could be different) such that the total perimeter of pieces is (1) maximized (2) minimized.

Remark: It appears maximizing the total perimeter is the easier problem.

Keywords: convex equipartition

Atomicity of the poset of multifuncoids ★★

Author(s): Porton

Conjecture   The poset of multifuncoids of the form $ (\mathscr{P}\mho)^n $ is for every sets $ \mho $ and $ n $:
    \item atomic; \item atomistic.

See below for definition of all concepts and symbols used to in this conjecture.

Refer to this Web site for the theory which I now attempt to generalize.

Keywords: multifuncoid

Free Jurassic Park Builder Cheats Generator Pro Apk (2024) ★★

Author(s):

Free Jurassic Park Builder Cheats Generator Pro Apk (2024)

Keywords:

The circular embedding conjecture ★★★

Author(s): Haggard

Conjecture   Every 2-connected graph may be embedded in a surface so that the boundary of each face is a cycle.

Keywords: cover; cycle

Dragon City Cheats Generator 2023-2024 Edition (Verified) ★★

Author(s):

Dragon City Cheats Generator 2023-2024 Edition (Verified)

Keywords:

Realisation problem for the space of knots in the 3-sphere ★★

Author(s): Budney

Problem   Given a link $ L $ in $ S^3 $, let the symmetry group of $ L $ be denoted $ Sym(L) = \pi_0 Diff(S^3,L) $ ie: isotopy classes of diffeomorphisms of $ S^3 $ which preserve $ L $, where the isotopies are also required to preserve $ L $.

Now let $ L $ be a hyperbolic link. Assume $ L $ has the further `Brunnian' property that there exists a component $ L_0 $ of $ L $ such that $ L \setminus L_0 $ is the unlink. Let $ A_L $ be the subgroup of $ Sym(L) $ consisting of diffeomorphisms of $ S^3 $ which preserve $ L_0 $ together with its orientation, and which preserve the orientation of $ S^3 $.

There is a representation $ A_L \to \pi_0 Diff(L \setminus L_0) $ given by restricting the diffeomorphism to the $ L \setminus L_0 $. It's known that $ A_L $ is always a cyclic group. And $ \pi_0 Diff(L \setminus L_0) $ is a signed symmetric group -- the wreath product of a symmetric group with $ \mathbb Z_2 $.

Problem: What representations can be obtained?

Keywords: knot space; symmetry

Geometry Dash Free Gold Coins Stars Cheats 2024 (LEGIT) ★★

Author(s):

Geometry Dash Free Gold Coins Stars Cheats 2024 (LEGIT)

Keywords:

Dragon Ball Z Dokkan Battle Cheats Generator 2024 (LEGIT) ★★

Author(s):

Dragon Ball Z Dokkan Battle Cheats Generator 2024 (LEGIT)

Keywords:

8 Ball Pool Free Cash Cheats Fully Works No Survey (Cheats) ★★

Author(s):

8 Ball Pool Free Cash Cheats Fully Works No Survey (Cheats)

Keywords:

Boom Beach Diamonds Generator Working Cheats (refreshed version) ★★

Author(s):

Boom Beach Diamonds Generator Working Cheats (refreshed version)

Keywords:

Free Sims FreePlay Free Simoleons Life Points and Social Points Cheats 2024 (Safe) ★★

Author(s):

Free Sims FreePlay Free Simoleons Life Points and Social Points Cheats 2024 (Safe)

Keywords:

Alexa's Conjecture on Primality ★★

Author(s): Alexa

Definition   Let $ r_i $ be the unique integer (with respect to a fixed $ p\in\mathbb{N} $) such that

$$(2i+1)^{p-1} \equiv r_i \pmod p ~~\text{ and } ~ 0 \le r_i < p. $$

Conjecture   A natural number $ p \ge 8 $ is a prime iff $$ \displaystyle \sum_{i=1}^{\left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor} r_i = \left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor $$

Keywords: primality

Petersen coloring conjecture ★★★

Author(s): Jaeger

Conjecture   Let $ G $ be a cubic graph with no bridge. Then there is a coloring of the edges of $ G $ using the edges of the Petersen graph so that any three mutually adjacent edges of $ G $ map to three mutually adjancent edges in the Petersen graph.

Keywords: cubic; edge-coloring; Petersen graph

Funcoidal products inside an inward reloid ★★

Author(s): Porton

Conjecture   (solved) If $ a \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} b \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f $ then $ a \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} b \subseteq f $ for every funcoid $ f $ and atomic f.o. $ a $ and $ b $ on the source and destination of $ f $ correspondingly.

A stronger conjecture:

Conjecture   If $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f $ then $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} \mathcal{B} \subseteq f $ for every funcoid $ f $ and $ \mathcal{A} \in \mathfrak{F} \left( \ensuremath{\operatorname{Src}}f \right) $, $ \mathcal{B} \in \mathfrak{F} \left( \ensuremath{\operatorname{Dst}}f \right) $.

Keywords: inward reloid

Erdős-Posa property for long directed cycles ★★

Author(s): Havet; Maia

Conjecture   Let $ \ell \geq 2 $ be an integer. For every integer $ n\geq 0 $, there exists an integer $ t_n=t_n(\ell) $ such that for every digraph $ D $, either $ D $ has a $ n $ pairwise-disjoint directed cycles of length at least $ \ell $, or there exists a set $ T $ of at most $ t_n $ vertices such that $ D-T $ has no directed cycles of length at least $ \ell $.

Keywords:

Working Generator Boom Beach Diamonds Cheats Android Ios 2024 (HOT) ★★

Author(s):

Working Generator Boom Beach Diamonds Cheats Android Ios 2024 (HOT)

Keywords:

The 3n+1 conjecture ★★★

Author(s): Collatz

Conjecture   Let $ f(n) = 3n+1 $ if $ n $ is odd and $ \frac{n}{2} $ if $ n $ is even. Let $ f(1) = 1 $. Assume we start with some number $ n $ and repeatedly take the $ f $ of the current number. Prove that no matter what the initial number is we eventually reach $ 1 $.

Keywords: integer sequence

KPZ Universality Conjecture ★★

Author(s):

KPZ Universality Conjecture

Keywords:

Ding's tau_r vs. tau conjecture ★★★

Author(s): Ding

Conjecture   Let $ r \ge 2 $ be an integer and let $ H $ be a minor minimal clutter with $ \frac{1}{r}\tau_r(H) < \tau(H) $. Then either $ H $ has a $ J_k $ minor for some $ k \ge 2 $ or $ H $ has Lehman's property.

Keywords: clutter; covering; MFMC property; packing

Covering a square with unit squares ★★

Author(s):

Conjecture   For any integer $ n \geq 1 $, it is impossible to cover a square of side greater than $ n $ with $ n^2+1 $ unit squares.

Keywords:

Apex Legends Coins Cheats 2024 (rejuvenated cheats) ★★

Author(s):

Apex Legends Coins Cheats 2024 (rejuvenated cheats)

Keywords:

Hamiltonian paths and cycles in vertex transitive graphs ★★★

Author(s): Lovasz

Problem   Does every connected vertex-transitive graph have a Hamiltonian path?

Keywords: cycle; hamiltonian; path; vertex-transitive

FarmVille 2 Coins Farm Bucks Cheats in a few minutes new 2024 (No Survey) ★★

Author(s):

FarmVille 2 Coins Farm Bucks Cheats in a few minutes new 2024 (No Survey)

Keywords:

Hamilton cycle in small d-diregular graphs ★★

Author(s): Jackson

An directed graph is $ k $-diregular if every vertex has indegree and outdegree at least $ k $.

Conjecture   For $ d >2 $, every $ d $-diregular oriented graph on at most $ 4d+1 $ vertices has a Hamilton cycle.

Keywords:

Woodall's Conjecture ★★★

Author(s): Woodall

Conjecture   If $ G $ is a directed graph with smallest directed cut of size $ k $, then $ G $ has $ k $ disjoint dijoins.

Keywords: digraph; packing

Rota's unimodal conjecture ★★★

Author(s): Rota

Let $ M $ be a matroid of rank $ r $, and for $ 0 \le i \le r $ let $ w_i $ be the number of closed sets of rank $ i $.

Conjecture   $ w_0,w_1,\ldots,w_r $ is unimodal.
Conjecture   $ w_0,w_1,\ldots,w_r $ is log-concave.

Keywords: flat; log-concave; matroid