Conjecture Let and are monovalued, entirely defined funcoids with . Then there exists a pointfree funcoid such that (for every filter on ) (The join operation is taken on the lattice of filters with reversed order.)
A positive solution of this problem may open a way to prove that some funcoids-related categories are cartesian closed.
Conjecture Let be an integer. For every integer , there exists an integer such that for every digraph , either has a pairwise-disjoint directed cycles of length at least , or there exists a set of at most vertices such that has no directed cycles of length at least .
A -page book embedding of consists of a linear order of and a (non-proper) -colouring of such that edges with the same colour do not cross with respect to . That is, if for some edges , then and receive distinct colours.
One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.
The book thickness of , denoted by bt is the minimum integer for which there is a -page book embedding of .
Let be the graph obtained by subdividing each edge of exactly once.
Conjecture There is a function such that for every graph ,
Question Can either of the following be expressed in fixed-point logic plus counting: \item Given a graph, does it have a perfect matching, i.e., a set of edges such that every vertex is incident to exactly one edge from ? \item Given a square matrix over a finite field (regarded as a structure in the natural way, as described in [BGS02]), what is its determinant?
Problem Let and be two -uniform hypergraph on the same vertex set . Does there always exist a partition of into classes such that for both , at least hyperedges of meet each of the classes ?
Problem Let be positve integer Does there exists an integer such that every -strong tournament admits a partition of its vertex set such that the subtournament induced by is a non-trivial -strong for all .
Problem () Find a sufficient condition for a straight -stage graph to be rearrangeable. In particular, what about a straight uniform graph?
Conjecture () Let be a simple regular ordered -stage graph. Suppose that the graph is externally connected, for some . Then the graph is rearrangeable.
Question \item Does hold over graphs of bounded tree-width? \item Is included in over graphs? \item Does have a 0-1 law? \item Are properties of Hanf-local? \item Is there a logic (with an effective syntax) that captures ?
Conjecture The sequence {L(n) mod m}, where L(n) are the Lucas numbers, contains a complete residue system modulo m if and only if m is one of the following: 2, 4, 6, 7, 14, 3^k, k >=1.
Conjecture For , let be the statement that given any exact -coloring of the edges of a complete countably infinite graph (that is, a coloring with colors all of which must be used at least once), there exists an exactly -colored countably infinite complete subgraph. Then is true if and only if , , or .
Conjecture Suppose with is a connected cubic graph admitting a -edge coloring. Then there is an edge such that the cubic graph homeomorphic to has a -edge coloring.
Conjecture For every prime , there is a constant (possibly ) so that the union (as multisets) of any bases of the vector space contains an additive basis.
For any simple digraph , we let be the number of unordered pairs of nonadjacent vertices (i.e. the number of non-edges), and be the size of the smallest feedback edge set.
Conjecture If is a simple digraph without directed cycles of length , then .
Conjecture Let is a -separable (the same as for symmetric transitive) compact funcoid and is a uniform space (reflexive, symmetric, and transitive endoreloid) such that . Then .
The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.
The direct proof may be constructed by correcting all errors an omissions in this draft article.
Direct proof could be better because with it we would get a little more general statement like this:
Conjecture Let be a -separable compact reflexive symmetric funcoid and be a reloid such that \item ; \item .