Conjecture Let be the space of Diffeomorphisms on the connected , compact and boundaryles manifold M and the space of vector fields. There is a dense set ( ) such that exhibit a finite number of attractor whose basins cover Lebesgue almost all ambient space
This is a very Deep and Hard problem in Dynamical Systems . It present the dream of the dynamicist mathematicians .
Consider a set of great circles on a sphere with no three circles meeting at a point. The arrangement graph of has a vertex for each intersection point, and an edge for each arc directly connecting two intersection points. So this arrangement graph is 4-regular and planar.
Conjecture Every arrangement graph of a set of great circles is -colourable.
In an edge-colored digraph, we say that a subgraph is rainbow if all its edges have distinct colors, and monochromatic if all its edges have the same color.
Problem Let be a tournament with edges colored from a set of three colors. Is it true that must have either a rainbow directed cycle of length three or a vertex so that every other vertex can be reached from by a monochromatic (directed) path?
To divide a given 2D convex region C into a specified number n of convex pieces all of equal area (perimeters could be different) such that the total perimeter of pieces is (1) maximized (2) minimized.
Remark: It appears maximizing the total perimeter is the easier problem.
Problem Given a link in , let the symmetry group of be denoted ie: isotopy classes of diffeomorphisms of which preserve , where the isotopies are also required to preserve .
Now let be a hyperbolic link. Assume has the further `Brunnian' property that there exists a component of such that is the unlink. Let be the subgroup of consisting of diffeomorphisms of which preserve together with its orientation, and which preserve the orientation of .
There is a representation given by restricting the diffeomorphism to the . It's known that is always a cyclic group. And is a signed symmetric group -- the wreath product of a symmetric group with .
Conjecture Let be a cubic graph with no bridge. Then there is a coloring of the edges of using the edges of the Petersen graph so that any three mutually adjacent edges of map to three mutually adjancent edges in the Petersen graph.
Conjecture Let be an integer. For every integer , there exists an integer such that for every digraph , either has a pairwise-disjoint directed cycles of length at least , or there exists a set of at most vertices such that has no directed cycles of length at least .
Conjecture Let if is odd and if is even. Let . Assume we start with some number and repeatedly take the of the current number. Prove that no matter what the initial number is we eventually reach .