Conjecture Let be a cubic graph with no bridge. Then there is a coloring of the edges of using the edges of the Petersen graph so that any three mutually adjacent edges of map to three mutually adjancent edges in the Petersen graph.
Conjecture Let and are monovalued, entirely defined funcoids with . Then there exists a pointfree funcoid such that (for every filter on ) (The join operation is taken on the lattice of filters with reversed order.)
A positive solution of this problem may open a way to prove that some funcoids-related categories are cartesian closed.
Suppose is a finite group, and is a positive integer dividing . Suppose that has exactly solutions to . Does it follow that these solutions form a subgroup of ?
Conjecture For , let be the statement that given any exact -coloring of the edges of a complete countably infinite graph (that is, a coloring with colors all of which must be used at least once), there exists an exactly -colored countably infinite complete subgraph. Then is true if and only if , , or .
Conjecture \item If is a 4-edge-connected locally finite graph, then its line graph is hamiltonian. \item If the line graph of a locally finite graph is 4-connected, then is hamiltonian.
Conjecture If every second positive integer except 2 is remaining, then every third remaining integer except 3, then every fourth remaining integer etc. , an infinite number of the remaining integers are prime.
Problem Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an grid. The first player (if any) to occupy four cells at the vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the game given optimal play? Note: Roland Bacher and Shalom Eliahou proved that every 15 x 15 binary matrix contains four equal entries (all 0's or all 1's) at the vertices of a square with horizontal and vertical sides. So the game must result in a winner (the first player) when n=15.
Problem The valency-variety of a graph is the number of different degrees in . Is the chromatic number of any graph with at least two vertices greater than