To divide a given 2D convex region C into a specified number n of convex pieces all of equal area (perimeters could be different) such that the total perimeter of pieces is (1) maximized (2) minimized.
Remark: It appears maximizing the total perimeter is the easier problem.
Note that the above is a generalization of monotone Galois connections (with and replaced with suprema and infima).
Then we have the following diagram:
What is at the node "other" in the diagram is unknown.
Conjecture "Other" is .
Question What repeated applying of and to "other" leads to? Particularly, does repeated applying and/or to the node "other" lead to finite or infinite sets?
Basic Question: Given any positive integer n, can any convex polygon be partitioned into n convex pieces so that all pieces have the same area and same perimeter?
Definitions: Define a Fair Partition of a polygon as a partition of it into a finite number of pieces so that every piece has both the same area and the same perimeter. Further, if all the resulting pieces are convex, call it a Convex Fair Partition.
Questions: 1. (Rephrasing the above 'basic' question) Given any positive integer n, can any convex polygon be convex fair partitioned into n pieces?
2. If the answer to the above is "Not always'', how does one decide the possibility of such a partition for a given convex polygon and a given n? And if fair convex partition is allowed by a specific convex polygon for a give n, how does one find the optimal convex fair partition that minimizes the total length of the cut segments?
3. Finally, what could one say about higher dimensional analogs of this question?
Conjecture: The authors tend to believe that the answer to the above 'basic' question is "yes". In other words they guess: Every convex polygon allows a convex fair partition into n pieces for any n
Conjecture For every set of points in the plane, not all collinear, there is a point in contained in at least lines determined by , for some constant .
Conjecture Let be a finite family of finite sets, not all empty, that is closed under taking unions. Then there exists such that is an element of at least half the members of .
Conjecture Suppose that is a -edge-critical graph. Suppose that for each edge of , there is a list of colors. Then is -edge-colorable unless all lists are equal to each other.
Setup Fix a tree and for every vertex a non-negative integer which we think of as the amount of gold at .
2-Player game Players alternate turns. On each turn, a player chooses a leaf vertex of the tree, takes the gold at this vertex, and then deletes . The game ends when the tree is empty, and the winner is the player who has accumulated the most gold.
Question I've been working on this for a long time and I'm getting nowhere. Could you help me or at least tell me where to look for help. Suppose D is an m-by-m diagonal matrix with integer elements all . Suppose X is an m-by-n integer matrix . Consider the partitioned matrix M = [D X]. Obviously M has full row rank so it has a right inverse of rational numbers. The question is, under what conditions does it have an integer right inverse? My guess, which I can't prove, is that the integers in each row need to be relatively prime.