Random

Free Call Of Duty Mobile Cheats Generator No Human Verification No Survey (Unused) ★★

Author(s):

Free Call Of Duty Mobile Cheats Generator No Human Verification No Survey (Unused)

Keywords:

Geometry Dash Gold Coins Stars Cheats 2024 Update (FREE!!) ★★

Author(s):

Geometry Dash Gold Coins Stars Cheats 2024 Update (FREE!!)

Keywords:

Arc-disjoint out-branching and in-branching ★★

Author(s): Thomassen

Conjecture   There exists an integer $ k $ such that every $ k $-arc-strong digraph $ D $ with specified vertices $ u $ and $ v $ contains an out-branching rooted at $ u $ and an in-branching rooted at $ v $ which are arc-disjoint.

Keywords:

Real Racing 3 Cheats Generator Working 2024 (Real Racing 3 Generator) ★★

Author(s):

Real Racing 3 Cheats Generator Working 2024 (Real Racing 3 Generator)

Keywords:

What are hyperfuncoids isomorphic to? ★★

Author(s): Porton

Let $ \mathfrak{A} $ be an indexed family of sets.

Products are $ \prod A $ for $ A \in \prod \mathfrak{A} $.

Hyperfuncoids are filters $ \mathfrak{F} \Gamma $ on the lattice $ \Gamma $ of all finite unions of products.

Problem   Is $ \bigcap^{\mathsf{\tmop{FCD}}} $ a bijection from hyperfuncoids $ \mathfrak{F} \Gamma $ to:
    \item prestaroids on $ \mathfrak{A} $; \item staroids on $ \mathfrak{A} $; \item completary staroids on $ \mathfrak{A} $?

If yes, is $ \operatorname{up}^{\Gamma} $ defining the inverse bijection? If not, characterize the image of the function $ \bigcap^{\mathsf{\tmop{FCD}}} $ defined on $ \mathfrak{F} \Gamma $.

Consider also the variant of this problem with the set $ \Gamma $ replaced with the set $ \Gamma^{\ast} $ of complements of elements of the set $ \Gamma $.

Keywords: hyperfuncoids; multidimensional

Convex Equipartitions with Extreme Perimeter ★★

Author(s): Nandakumar

To divide a given 2D convex region C into a specified number n of convex pieces all of equal area (perimeters could be different) such that the total perimeter of pieces is (1) maximized (2) minimized.

Remark: It appears maximizing the total perimeter is the easier problem.

Keywords: convex equipartition

Unit vector flows ★★

Author(s): Jain

Conjecture   For every graph $ G $ without a bridge, there is a flow $ \phi : E(G) \rightarrow S^2 = \{ x \in {\mathbb R}^3 : |x| = 1 \} $.

Conjecture   There exists a map $ q:S^2 \rightarrow \{-4,-3,-2,-1,1,2,3,4\} $ so that antipodal points of $ S^2 $ receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.

Keywords: nowhere-zero flow

New Update: Warzone Free COD points Cheats 2024 No Human Verification ★★

Author(s):

New Update: Warzone Free COD points Cheats 2024 No Human Verification

Keywords:

The 3n+1 conjecture ★★★

Author(s): Collatz

Conjecture   Let $ f(n) = 3n+1 $ if $ n $ is odd and $ \frac{n}{2} $ if $ n $ is even. Let $ f(1) = 1 $. Assume we start with some number $ n $ and repeatedly take the $ f $ of the current number. Prove that no matter what the initial number is we eventually reach $ 1 $.

Keywords: integer sequence

Continous analogue of Hirsch conjecture ★★

Author(s): Deza; Terlaky; Zinchenko

Conjecture   The order of the largest total curvature of the primal central path over all polytopes defined by $ n $ inequalities in dimension $ d $ is $ n $.

Keywords: curvature; polytope

57-regular Moore graph? ★★★

Author(s): Hoffman; Singleton

Question   Does there exist a 57-regular graph with diameter 2 and girth 5?

Keywords: cage; Moore graph

Imbalance conjecture ★★

Author(s): Kozerenko

Conjecture   Suppose that for all edges $ e\in E(G) $ we have $ imb(e)>0 $. Then $ M_{G} $ is graphic.

Keywords: edge imbalance; graphic sequences

List colorings of edge-critical graphs ★★

Author(s): Mohar

Conjecture   Suppose that $ G $ is a $ \Delta $-edge-critical graph. Suppose that for each edge $ e $ of $ G $, there is a list $ L(e) $ of $ \Delta $ colors. Then $ G $ is $ L $-edge-colorable unless all lists are equal to each other.

Keywords: edge-coloring; list coloring

Graceful Tree Conjecture ★★★

Author(s):

Conjecture   All trees are graceful

Keywords: combinatorics; graceful labeling

What is the smallest number of disjoint spanning trees made a graph Hamiltonian ★★

Author(s): Goldengorin

We are given a complete simple undirected weighted graph $ G_1=(V,E) $ and its first arbitrary shortest spanning tree $ T_1=(V,E_1) $. We define the next graph $ G_2=(V,E\setminus E_1) $ and find on $ G_2 $ the second arbitrary shortest spanning tree $ T_2=(V,E_2) $. We continue similarly by finding $ T_3=(V,E_3) $ on $ G_3=(V,E\setminus \cup_{i=1}^{2}E_i) $, etc. Let k be the smallest number of disjoint shortest spanning trees as defined above and let $ T^{k}=(V,\cup_{i=1}^{k}E_i) $ be the graph obtained as union of all $ k $ disjoint trees.

Question 1. What is the smallest number of disjoint spanning trees creates a graph $ T^{k} $ containing a Hamiltonian path.

Question 2. What is the smallest number of disjoint spanning trees creates a graph $ T^{k} $ containing a shortest Hamiltonian path?

Questions 3 and 4. Replace in questions 1 and 2 a shortest spanning tree by a 1-tree. What is the smallest number of disjoint 1-trees creates a Hamiltonian graph? What is the smallest number of disjoint 1-trees creates a graph containing a shortest Hamiltonian cycle?

Keywords: 1-trees; cycle; Hamitonian path; spanning trees

Geodesic cycles and Tutte's Theorem ★★

Author(s): Georgakopoulos; Sprüssel

Problem   If $ G $ is a $ 3 $-connected finite graph, is there an assignment of lengths $ \ell: E(G) \to \mathb R^+ $ to the edges of $ G $, such that every $ \ell $-geodesic cycle is peripheral?

Keywords: cycle space; geodesic cycles; peripheral cycles

Dragon Ball Z Dokkan Battle Cheats Generator 2024 (LEGIT) ★★

Author(s):

Dragon Ball Z Dokkan Battle Cheats Generator 2024 (LEGIT)

Keywords:

3-Edge-Coloring Conjecture ★★★

Author(s): Arthur; Hoffmann-Ostenhof

Conjecture   Suppose $ G $ with $ |V(G)|>2 $ is a connected cubic graph admitting a $ 3 $-edge coloring. Then there is an edge $ e \in E(G) $ such that the cubic graph homeomorphic to $ G-e $ has a $ 3 $-edge coloring.

Keywords: 3-edge coloring; 4-flow; removable edge

Edge-disjoint Hamilton cycles in highly strongly connected tournaments. ★★

Author(s): Thomassen

Conjecture   For every $ k\geq 2 $, there is an integer $ f(k) $ so that every strongly $ f(k) $-connected tournament has $ k $ edge-disjoint Hamilton cycles.

Keywords:

Coloring and immersion ★★★

Author(s): Abu-Khzam; Langston

Conjecture   For every positive integer $ t $, every (loopless) graph $ G $ with $ \chi(G) \ge t $ immerses $ K_t $.

Keywords: coloring; complete graph; immersion

Idle Miner Tycoon Cheats Generator Pro Apk (Android Ios) ★★

Author(s):

Idle Miner Tycoon Cheats Generator Pro Apk (Android Ios)

Keywords:

Fixed-point logic with counting ★★

Author(s): Blass

Question   Can either of the following be expressed in fixed-point logic plus counting:
    \item Given a graph, does it have a perfect matching, i.e., a set $ M $ of edges such that every vertex is incident to exactly one edge from $ M $? \item Given a square matrix over a finite field (regarded as a structure in the natural way, as described in [BGS02]), what is its determinant?

Keywords: Capturing PTime; counting quantifiers; Fixed-point logic; FMT03-Bedlewo

Jurassic World Alive Coins Cash Cheats 2024 Update Cheat (Verified) ★★

Author(s):

Jurassic World Alive Coins Cash Cheats 2024 Update Cheat (Verified)

Keywords:

Warframe Cheats Generator (iOS Android 2024) ★★

Author(s):

Warframe Cheats Generator (iOS Android 2024)

Keywords:

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator IOS Android 2024 (get codes) ★★

Author(s):

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator IOS Android 2024 (get codes)

Keywords:

Jones' conjecture ★★

Author(s): Kloks; Lee; Liu

For a graph $ G $, let $ cp(G) $ denote the cardinality of a maximum cycle packing (collection of vertex disjoint cycles) and let $ cc(G) $ denote the cardinality of a minimum feedback vertex set (set of vertices $ X $ so that $ G-X $ is acyclic).

Conjecture   For every planar graph $ G $, $ cc(G)\leq 2cp(G) $.

Keywords: cycle packing; feedback vertex set; planar graph

$C^r$ Stability Conjecture ★★★★

Author(s): Palis; Smale

Conjecture   Any $ C^r $ structurally stable diffeomorphism is hyperbolic.

Keywords: diffeomorphisms,; dynamical systems

The permanent conjecture ★★

Author(s): Kahn

Conjecture   If $ A $ is an invertible $ n \times n $ matrix, then there is an $ n \times n $ submatrix $ B $ of $ [A A] $ so that $ perm(B) $ is nonzero.

Keywords: invertible; matrix; permanent

Realisation problem for the space of knots in the 3-sphere ★★

Author(s): Budney

Problem   Given a link $ L $ in $ S^3 $, let the symmetry group of $ L $ be denoted $ Sym(L) = \pi_0 Diff(S^3,L) $ ie: isotopy classes of diffeomorphisms of $ S^3 $ which preserve $ L $, where the isotopies are also required to preserve $ L $.

Now let $ L $ be a hyperbolic link. Assume $ L $ has the further `Brunnian' property that there exists a component $ L_0 $ of $ L $ such that $ L \setminus L_0 $ is the unlink. Let $ A_L $ be the subgroup of $ Sym(L) $ consisting of diffeomorphisms of $ S^3 $ which preserve $ L_0 $ together with its orientation, and which preserve the orientation of $ S^3 $.

There is a representation $ A_L \to \pi_0 Diff(L \setminus L_0) $ given by restricting the diffeomorphism to the $ L \setminus L_0 $. It's known that $ A_L $ is always a cyclic group. And $ \pi_0 Diff(L \setminus L_0) $ is a signed symmetric group -- the wreath product of a symmetric group with $ \mathbb Z_2 $.

Problem: What representations can be obtained?

Keywords: knot space; symmetry

Cooking Fever Cheats Generator Android Ios No Survey 2024 (NEW) ★★

Author(s):

Cooking Fever Cheats Generator Android Ios No Survey 2024 (NEW)

Keywords:

Coin Master Spins Coins Cheats 2024 No Human Verification (Real) ★★

Author(s):

Coin Master Spins Coins Cheats 2024 No Human Verification (Real)

Keywords:

Characterizing (aleph_0,aleph_1)-graphs ★★★

Author(s): Diestel; Leader

Call a graph an $ (\aleph_0,\aleph_1) $-graph if it has a bipartition $ (A,B) $ so that every vertex in $ A $ has degree $ \aleph_0 $ and every vertex in $ B $ has degree $ \aleph_1 $.

Problem   Characterize the $ (\aleph_0,\aleph_1) $-graphs.

Keywords: binary tree; infinite graph; normal spanning tree; set theory

Acyclic edge-colouring ★★

Author(s): Fiamcik

Conjecture   Every simple graph with maximum degree $ \Delta $ has a proper $ (\Delta+2) $-edge-colouring so that every cycle contains edges of at least three distinct colours.

Keywords: edge-coloring

"Working Cheats" Warzone COD points Generator No Human Verification 2024 ★★

Author(s):

"Working Cheats" Warzone COD points Generator No Human Verification 2024

Keywords:

Free Jurassic Park Builder Cheats Generator Pro Apk (2024) ★★

Author(s):

Free Jurassic Park Builder Cheats Generator Pro Apk (2024)

Keywords:

Fishdom Cheats Generator 2024 Edition Update (WORKS) ★★

Author(s):

Fishdom Cheats Generator 2024 Edition Update (WORKS)

Keywords:

Yu Gi Oh Duel Links Cheats Generator 2024 (safe and working) ★★

Author(s):

Yu Gi Oh Duel Links Cheats Generator 2024 (safe and working)

Keywords:

Kneser–Poulsen conjecture ★★★

Author(s): Kneser; Poulsen

Conjecture   If a finite set of unit balls in $ \mathbb{R}^n $ is rearranged so that the distance between each pair of centers does not decrease, then the volume of the union of the balls does not decrease.

Keywords: pushing disks

Hungry Shark Evolution Cheats Generator 2024 Cheats Generator Tested On Android Ios (WORKING TIPS) ★★

Author(s):

Hungry Shark Evolution Cheats Generator 2024 Cheats Generator Tested On Android Ios (WORKING TIPS)

Keywords:

8 Ball Pool Cash Free Cheats 2024 (generator!) ★★

Author(s):

8 Ball Pool Cash Free Cheats 2024 (generator!)

Keywords:

Easy! Unlimited Candy Crush Saga Golds Lives Go New Cheats Codes ★★

Author(s):

Easy! Unlimited Candy Crush Saga Golds Lives Go New Cheats Codes

Keywords:

Closing Lemma for Diffeomorphism (Dynamical Systems) ★★★★

Author(s): Charles Pugh

Conjecture   Let $ f\in Diff^{r}(M) $ and $ p\in\omega_{f}  $. Then for any neighborhood $ V_{f}\subset Diff^{r}(M)  $ there is $ g\in V_{f} $ such that $ p $ is periodic point of $ g $

There is an analogous conjecture for flows ( $ C^{r} $ vector fields . In the case of diffeos this was proved by Charles Pugh for $ r = 1 $. In the case of Flows this has been solved by Sushei Hayahshy for $ r = 1 $ . But in the two cases the problem is wide open for $ r > 1 $

Keywords: Dynamics , Pertubation

New World Of Tanks Blitz Free Gold Credits Cheats 2024 Tested (extra) ★★

Author(s):

New World Of Tanks Blitz Free Gold Credits Cheats 2024 Tested (extra)

Keywords:

Magic square of squares ★★

Author(s): LaBar

Question   Does there exist a $ 3\times 3 $ magic square composed of distinct perfect squares?

Keywords:

Average diameter of a bounded cell of a simple arrangement ★★

Author(s): Deza; Terlaky; Zinchenko

Conjecture   The average diameter of a bounded cell of a simple arrangement defined by $ n $ hyperplanes in dimension $ d $ is not greater than $ d $.

Keywords: arrangement; diameter; polytope

Match Masters Free Coins Cheats 2024 (FREE!) ★★

Author(s):

Match Masters Free Coins Cheats 2024 (FREE!)

Keywords:

Free Real Racing 3 Cheats Generator 2024 (updated Generator) ★★

Author(s):

Free Real Racing 3 Cheats Generator 2024 (updated Generator)

Keywords:

New-mathod! Free Bloons TD Battles Energy Medal Money Cheats 2024 (No Human Verification) ★★

Author(s):

New-mathod! Free Bloons TD Battles Energy Medal Money Cheats 2024 (No Human Verification)

Keywords:

Double-critical graph conjecture ★★

Author(s): Erdos; Lovasz

A connected simple graph $ G $ is called double-critical, if removing any pair of adjacent vertexes lowers the chromatic number by two.

Conjecture   $ K_n $ is the only $ n $-chromatic double-critical graph

Keywords: coloring; complete graph

Upgrading a completary multifuncoid ★★

Author(s): Porton

Let $ \mho $ be a set, $ \mathfrak{F} $ be the set of filters on $ \mho $ ordered reverse to set-theoretic inclusion, $ \mathfrak{P} $ be the set of principal filters on $ \mho $, let $ n $ be an index set. Consider the filtrator $ \left( \mathfrak{F}^n ; \mathfrak{P}^n \right) $.

Conjecture   If $ f $ is a completary multifuncoid of the form $ \mathfrak{P}^n $, then $ E^{\ast} f $ is a completary multifuncoid of the form $ \mathfrak{F}^n $.

See below for definition of all concepts and symbols used to in this conjecture.

Refer to this Web site for the theory which I now attempt to generalize.

Keywords: