An alternating walk in a digraph is a walk so that the vertex is either the head of both and or the tail of both and for every . A digraph is universal if for every pair of edges , there is an alternating walk containing both and
Question Does there exist a locally finite highly arc transitive digraph which is universal?
Conjecture Define a array of positive integers where the first row consists of some distinct positive integers arranged in increasing order, and the second row consists of any positive integers in any order. Create a new array where the first row consists of all the integers that occur in the first array, arranged in increasing order, and the second row consists of their multiplicities. Repeat the process. For example, starting with the array , the sequence is: -> -> -> -> -> -> -> -> -> -> -> , and we now have a fixed point (loop of one array).
The process always results in a loop of 1, 2, or 3 arrays.
The zeroes of the Riemann zeta function that are inside the Critical Strip (i.e. the vertical strip of the complex plane where the real part of the complex variable is in ]0;1[), are actually located on the Critical line ( the vertical line of the complex plane with real part equal to 1/2)
Conjecture An endomorphism of a graph is a mapping on the vertex set of the graph which preserves edges. Among all the vertices' trees, the star with vertices has the most endomorphisms, while the path with vertices has the least endomorphisms.
Conjecture Every surreal number has a unique sign expansion, i.e. function , where is some ordinal. This is the length of given sign expansion and also the birthday of the corresponding surreal number. Let us denote this length of as .
Let be a set, be the set of filters on ordered reverse to set-theoretic inclusion, be the set of principal filters on , let be an index set. Consider the filtrator .
Conjecture If is a completary multifuncoid of the form , then is a completary multifuncoid of the form .
See below for definition of all concepts and symbols used to in this conjecture.
Refer to this Web site for the theory which I now attempt to generalize.
Let be a class of finite relational structures. We denote by the number of structures in over the labeled set . For any class definable in monadic second-order logic with unary and binary relation symbols, Specker and Blatter showed that, for every , the function is ultimately periodic modulo .
Question Does the Blatter-Specker Theorem hold for ternary relations.