Conjecture Let be a Cantor set embedded in . Is there a self-homeomorphism of for every greater than so that moves every point by less than and does not intersect ? Such an embedded Cantor set for which no such exists (for some ) is called "sticky". For what dimensions do sticky Cantor sets exist?
Conjecture For every , there exists an integer such that if is a digraph whose arcs are colored with colors, then has a set which is the union of stables sets so that every vertex has a monochromatic path to some vertex in .
Conjecture Every complete geometric graph with an even number of vertices has a partition of its edge set into plane (i.e. non-crossing) spanning trees.
Consider a set of great circles on a sphere with no three circles meeting at a point. The arrangement graph of has a vertex for each intersection point, and an edge for each arc directly connecting two intersection points. So this arrangement graph is 4-regular and planar.
Conjecture Every arrangement graph of a set of great circles is -colourable.
An alternating walk in a digraph is a walk so that the vertex is either the head of both and or the tail of both and for every . A digraph is universal if for every pair of edges , there is an alternating walk containing both and
Question Does there exist a locally finite highly arc transitive digraph which is universal?
Conjecture If is a finite field with at least 4 elements and is an invertible matrix with entries in , then there are column vectors which have no coordinates equal to zero such that .
Conjecture Let be a simple graph with vertices and list chromatic number . Suppose that and each vertex of is assigned a list of colors. Then at least vertices of can be colored from these lists.
The zeroes of the Riemann zeta function that are inside the Critical Strip (i.e. the vertical strip of the complex plane where the real part of the complex variable is in ]0;1[), are actually located on the Critical line ( the vertical line of the complex plane with real part equal to 1/2)
Begin with the generating function for unrestricted partitions:
(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...
Now change some of the plus signs to minus signs. The resulting series will have coefficients congruent, mod 2, to the coefficients of the generating series for unrestricted partitions. I conjecture that the signs may be chosen such that all the coefficients of the series are either 1, -1, or zero.
Let be a set of points in the plane. Two points and in are visible with respect to if the line segment between and contains no other point in .
Conjecture For all integers there is an integer such that every set of at least points in the plane contains at least collinear points or pairwise visible points.
Conjecture Let and are monovalued, entirely defined funcoids with . Then there exists a pointfree funcoid such that (for every filter on ) (The join operation is taken on the lattice of filters with reversed order.)
A positive solution of this problem may open a way to prove that some funcoids-related categories are cartesian closed.
Conjecture If every second positive integer except 2 is remaining, then every third remaining integer except 3, then every fourth remaining integer etc. , an infinite number of the remaining integers are prime.
Setup Fix a tree and for every vertex a non-negative integer which we think of as the amount of gold at .
2-Player game Players alternate turns. On each turn, a player chooses a leaf vertex of the tree, takes the gold at this vertex, and then deletes . The game ends when the tree is empty, and the winner is the player who has accumulated the most gold.