Random

Is there an algorithm to determine if a triangulated 4-manifold is combinatorially equivalent to the 4-sphere? ★★★

Author(s): Novikov

Problem   Is there an algorithm which takes as input a triangulated 4-manifold, and determines whether or not this manifold is combinatorially equivalent to the 4-sphere?

Keywords: 4-sphere; algorithm

Free Real Racing 3 Cheats Generator 2024 (updated Generator) ★★

Author(s):

Free Real Racing 3 Cheats Generator 2024 (updated Generator)

Keywords:

Dragon City Cheats Generator 2023-2024 Edition (Verified) ★★

Author(s):

Dragon City Cheats Generator 2023-2024 Edition (Verified)

Keywords:

Goldbach conjecture ★★★★

Author(s): Goldbach

Conjecture   Every even integer greater than 2 is the sum of two primes.

Keywords: additive basis; prime

Bingo Blitz Cheats Generator Free Unlimited Cheats Generator (LATEST VERSION) ★★

Author(s):

Bingo Blitz Cheats Generator Free Unlimited Cheats Generator (LATEST VERSION)

Keywords:

One-way functions exist ★★★★

Author(s):

Conjecture   One-way functions exist.

Keywords: one way function

Arc-disjoint out-branching and in-branching ★★

Author(s): Thomassen

Conjecture   There exists an integer $ k $ such that every $ k $-arc-strong digraph $ D $ with specified vertices $ u $ and $ v $ contains an out-branching rooted at $ u $ and an in-branching rooted at $ v $ which are arc-disjoint.

Keywords:

Fractional Hadwiger ★★

Author(s): Harvey; Reed; Seymour; Wood

Conjecture   For every graph $ G $,
(a) $ \chi_f(G)\leq\text{had}(G) $
(b) $ \chi(G)\leq\text{had}_f(G) $
(c) $ \chi_f(G)\leq\text{had}_f(G) $.

Keywords: fractional coloring, minors

Extremal problem on the number of tree endomorphism ★★

Author(s): Zhicong Lin

Conjecture   An endomorphism of a graph is a mapping on the vertex set of the graph which preserves edges. Among all the $ n $ vertices' trees, the star with $ n $ vertices has the most endomorphisms, while the path with $ n $ vertices has the least endomorphisms.

Keywords:

Kriesell's Conjecture ★★

Author(s): Kriesell

Conjecture   Let $ G $ be a graph and let $ T\subseteq V(G) $ such that for any pair $ u,v\in T $ there are $ 2k $ edge-disjoint paths from $ u $ to $ v $ in $ G $. Then $ G $ contains $ k $ edge-disjoint trees, each of which contains $ T $.

Keywords: Disjoint paths; edge-connectivity; spanning trees

Geometry Dash Gold Coins Stars Cheats 2024 Update (FREE!!) ★★

Author(s):

Geometry Dash Gold Coins Stars Cheats 2024 Update (FREE!!)

Keywords:

The Sims Mobile Cheats Generator 2024 for Android iOS (UPDATED Generator) ★★

Author(s):

The Sims Mobile Cheats Generator 2024 for Android iOS (UPDATED Generator)

Keywords:

Atomicity of the poset of multifuncoids ★★

Author(s): Porton

Conjecture   The poset of multifuncoids of the form $ (\mathscr{P}\mho)^n $ is for every sets $ \mho $ and $ n $:
    \item atomic; \item atomistic.

See below for definition of all concepts and symbols used to in this conjecture.

Refer to this Web site for the theory which I now attempt to generalize.

Keywords: multifuncoid

Infinite uniquely hamiltonian graphs ★★

Author(s): Mohar

Problem   Are there any uniquely hamiltonian locally finite 1-ended graphs which are regular of degree $ r > 2 $?

Keywords: hamiltonian; infinite graph; uniquely hamiltonian

Family Island Cheats Generator 2024 Free No Verification (New.updated) ★★

Author(s):

Family Island Cheats Generator 2024 Free No Verification (New.updated)

Keywords:

Cookie Run Kingdom Cheats Generator Android Ios 2024 Cheats Generator (free) ★★

Author(s):

Cookie Run Kingdom Cheats Generator Android Ios 2024 Cheats Generator (free)

Keywords:

Seagull problem ★★

Author(s):

Seagull problem

Keywords:

Real Racing 3 Cheats Generator in a few minutes new Cheats Generator 2024 (No Survey) ★★

Author(s):

Real Racing 3 Cheats Generator in a few minutes new Cheats Generator 2024 (No Survey)

Keywords:

Free Jurassic Park Builder Cheats Generator Pro Apk (2024) ★★

Author(s):

Free Jurassic Park Builder Cheats Generator Pro Apk (2024)

Keywords:

Coloring the union of degenerate graphs ★★

Author(s): Tarsi

Conjecture   The union of a $ 1 $-degenerate graph (a forest) and a $ 2 $-degenerate graph is $ 5 $-colourable.

Keywords:

V-Bucks Generator Unlimited IOS Android No Survey 2024 (FREE METHOD) ★★

Author(s):

V-Bucks Generator Unlimited IOS Android No Survey 2024 (FREE METHOD)

Keywords:

Fortnite Working Generator V-Bucks Generator (NEW AND FREE) ★★

Author(s):

Fortnite Working Generator V-Bucks Generator (NEW AND FREE)

Keywords:

Genshin Impact Cheats Generator 2024 Edition Update (WORKS) ★★

Author(s):

Genshin Impact Cheats Generator 2024 Edition Update (WORKS)

Keywords:

Monochromatic reachability or rainbow triangles ★★★

Author(s): Sands; Sauer; Woodrow

In an edge-colored digraph, we say that a subgraph is rainbow if all its edges have distinct colors, and monochromatic if all its edges have the same color.

Problem   Let $ G $ be a tournament with edges colored from a set of three colors. Is it true that $ G $ must have either a rainbow directed cycle of length three or a vertex $ v $ so that every other vertex can be reached from $ v $ by a monochromatic (directed) path?

Keywords: digraph; edge-coloring; tournament

Raid Shadow Legends Cheats Generator Working (refreshed version) ★★

Author(s):

Raid Shadow Legends Cheats Generator Working (refreshed version)

Keywords:

Turán number of a finite family. ★★

Author(s): Erdos; Simonovits

Given a finite family $ {\cal F} $ of graphs and an integer $ n $, the Turán number $ ex(n,{\cal F}) $ of $ {\cal F} $ is the largest integer $ m $ such that there exists a graph on $ n $ vertices with $ m $ edges which contains no member of $ {\cal F} $ as a subgraph.

Conjecture   For every finite family $ {\cal F} $ of graphs there exists an $ F\in {\cal F} $ such that $ ex(n, F ) = O(ex(n, {\cal F})) $ .

Keywords:

List chromatic number and maximum degree of bipartite graphs ★★

Author(s): Alon

Conjecture   There is a constant $ c $ such that the list chromatic number of any bipartite graph $ G $ of maximum degree $ \Delta $ is at most $ c \log \Delta $.

Keywords:

Multicolour Erdős--Hajnal Conjecture ★★★

Author(s): Erdos; Hajnal

Conjecture   For every fixed $ k\geq2 $ and fixed colouring $ \chi $ of $ E(K_k) $ with $ m $ colours, there exists $ \varepsilon>0 $ such that every colouring of the edges of $ K_n $ contains either $ k $ vertices whose edges are coloured according to $ \chi $ or $ n^\varepsilon $ vertices whose edges are coloured with at most $ m-1 $ colours.

Keywords: ramsey theory

Boom Beach Diamonds Generator Working Cheats (refreshed version) ★★

Author(s):

Boom Beach Diamonds Generator Working Cheats (refreshed version)

Keywords:

Burnside problem ★★★★

Author(s): Burnside

Conjecture   If a group has $ r $ generators and exponent $ n $, is it necessarily finite?

Keywords:

Cores of strongly regular graphs ★★★

Author(s): Cameron; Kazanidis

Question   Does every strongly regular graph have either itself or a complete graph as a core?

Keywords: core; strongly regular

Family Island Cheats Generator Pro Apk (Android Ios) ★★

Author(s):

Family Island Cheats Generator Pro Apk (Android Ios)

Keywords:

Erdős-Posa property for long directed cycles ★★

Author(s): Havet; Maia

Conjecture   Let $ \ell \geq 2 $ be an integer. For every integer $ n\geq 0 $, there exists an integer $ t_n=t_n(\ell) $ such that for every digraph $ D $, either $ D $ has a $ n $ pairwise-disjoint directed cycles of length at least $ \ell $, or there exists a set $ T $ of at most $ t_n $ vertices such that $ D-T $ has no directed cycles of length at least $ \ell $.

Keywords:

Decomposing a connected graph into paths. ★★★

Author(s): Gallai

Conjecture   Every simple connected graph on $ n $ vertices can be decomposed into at most $ \frac{1}{2}(n+1) $ paths.

Keywords:

SimCity BuildIt Cheats Generator Free 2024 No Human Verification (New Update) ★★

Author(s):

SimCity BuildIt Cheats Generator Free 2024 No Human Verification (New Update)

Keywords:

Rise Of Kingdoms Cheats Generator 2023-2024 Edition (Verified) ★★

Author(s):

Rise Of Kingdoms Cheats Generator 2023-2024 Edition (Verified)

Keywords:

Schanuel's Conjecture ★★★★

Author(s): Schanuel

Conjecture   Given any $ n $ complex numbers $ z_1,...,z_n $ which are linearly independent over the rational numbers $ \mathbb{Q} $, then the extension field $ \mathbb{Q}(z_1,...,z_n,\exp(z_1),...,\exp(z_n)) $ has transcendence degree of at least $ n $ over $ \mathbb{Q} $.

Keywords: algebraic independence

Is Skewes' number e^e^e^79 an integer? ★★

Author(s):

Conjecture  

Skewes' number $ e^{e^{e^{79}}} $ is not an integer.

Keywords:

Perfect 2-error-correcting codes over arbitrary finite alphabets. ★★

Author(s):

Conjecture   Does there exist a nontrivial perfect 2-error-correcting code over any finite alphabet, other than the ternary Golay code?

Keywords: 2-error-correcting; code; existence; perfect; perfect code

Directed path of length twice the minimum outdegree ★★★

Author(s): Thomassé

Conjecture   Every oriented graph with minimum outdegree $ k $ contains a directed path of length $ 2k $.

Keywords:

Fishdom Cheats Generator 2023-2024 Edition Hack (NEW-FREE!!) ★★

Author(s):

Fishdom Cheats Generator 2023-2024 Edition Hack (NEW-FREE!!)

Keywords:

Several ways to apply a (multivalued) multiargument function to a family of filters ★★★

Author(s): Porton

Problem   Let $ \mathcal{X} $ be an indexed family of filters on sets. Which of the below items are always pairwise equal?

1. The funcoid corresponding to this function (considered as a single argument function on indexed families) applied to the reloidal product of filters $ \mathcal{X} $.

2. The funcoid corresponding to this function (considered as a single argument function on indexed families) applied to the starred reloidal product of filters $ \mathcal{X} $.

3. $ \bigcap_{F\in\operatorname{up}^{\mathrm{FCD}}\prod^{\mathrm{Strd}}\mathcal{X}}\langle f \rangle F $.

Keywords: funcoid; function; multifuncoid; staroid

New Update: Sims FreePlay Free Simoleons Life Points and Social Points Cheats 2024 No Human Verification ★★

Author(s):

New Update: Sims FreePlay Free Simoleons Life Points and Social Points Cheats 2024 No Human Verification

Keywords:

Approximation Ratio for Maximum Edge Disjoint Paths problem ★★

Author(s): Bentz

Conjecture   Can the approximation ratio $ O(\sqrt{n}) $ be improved for the Maximum Edge Disjoint Paths problem (MaxEDP) in planar graphs or can an inapproximability result stronger than $ \mathcal{APX} $-hardness?

Keywords: approximation algorithms; Disjoint paths; planar graph; polynomial algorithm

Odd-cycle transversal in triangle-free graphs ★★

Author(s): Erdos; Faudree; Pach; Spencer

Conjecture   If $ G $ is a simple triangle-free graph, then there is a set of at most $ n^2/25 $ edges whose deletion destroys every odd cycle.

Keywords:

Colouring the square of a planar graph ★★

Author(s): Wegner

Conjecture   Let $ G $ be a planar graph of maximum degree $ \Delta $. The chromatic number of its square is
    \item at most $ 7 $ if $ \Delta =3 $, \item at most $ \Delta+5 $ if $ 4\leq\Delta\leq 7 $, \item at most $ \left\lfloor\frac32\,\Delta\right\rfloor+1 $ if $ \Delta\ge8 $.

Keywords:

A conjecture on iterated circumcentres ★★

Author(s): Goddyn

Conjecture   Let $ p_1,p_2,p_3,\ldots $ be a sequence of points in $ {\mathbb R}^d $ with the property that for every $ i \ge d+2 $, the points $ p_{i-1}, p_{i-2}, \ldots p_{i-d-1} $ are distinct, lie on a unique sphere, and further, $ p_i $ is the center of this sphere. If this sequence is periodic, must its period be $ 2d+4 $?

Keywords: periodic; plane geometry; sequence

"New Cheats" Star Stable Star Coins Jorvik Coins Cheats Free 2024 ★★

Author(s):

"New Cheats" Star Stable Star Coins Jorvik Coins Cheats Free 2024

Keywords:

Erdős–Faber–Lovász conjecture ★★★

Author(s): Erdos; Faber; Lovasz

Conjecture   If $ G $ is a simple graph which is the union of $ k $ pairwise edge-disjoint complete graphs, each of which has $ k $ vertices, then the chromatic number of $ G $ is $ k $.

Keywords: chromatic number

Hamiltonicity of Cayley graphs ★★★

Author(s): Rapaport-Strasser

Question   Is every Cayley graph Hamiltonian?

Keywords: