An oriented colouring of an oriented graph is assignment of colours to the vertices such that no two arcs receive ordered pairs of colours and . It is equivalent to a homomorphism of the digraph onto some tournament of order .
Let be a non-empty finite set. Given a partition of , the stabilizer of , denoted , is the group formed by all permutations of preserving each block of .
Problem () Find a sufficient condition for a sequence of partitions of to be complete, i.e. such that the product of their stabilizers is equal to the whole symmetric group on . In particular, what about completeness of the sequence , given a partition of and a permutation of ?
Conjecture (Beneš) Let be a uniform partition of and be a permutation of such that . Suppose that the set is transitive, for some integer . Then
Conjecture In the category of continuous funcoids (defined similarly to the category of topological spaces) the following is a direct categorical product:
\item Product morphism is defined similarly to the category of topological spaces. \item Product object is the sub-atomic product. \item Projections are sub-atomic projections.
See details, exact definitions, and attempted proofs here.
Conjecture For every fixed and fixed colouring of with colours, there exists such that every colouring of the edges of contains either vertices whose edges are coloured according to or vertices whose edges are coloured with at most colours.
Problem Is there a problem that can be computed by a Turing machine in polynomial space and unbounded time but not in polynomial time? More formally, does P = PSPACE?
Conjecture If is a non-empty graph containing no induced odd cycle of length at least , then there is a -vertex colouring of in which no maximum clique is monochromatic.
A covering design, or covering, is a family of -subsets, called blocks, chosen from a -set, such that each -subset is contained in at least one of the blocks. The number of blocks is the covering’s size, and the minimum size of such a covering is denoted by .
Problem Find a closed form, recurrence, or better bounds for . Find a procedure for constructing minimal coverings.