Question What is the least integer such that every set of at least points in the plane contains collinear points or a subset of points in general position (no three collinear)?
Problem has the homotopy-type of a product space where is the group of diffeomorphisms of the 4-ball which restrict to the identity on the boundary. Determine some (any?) homotopy or homology groups of .
If is a finite set of points which is 2-colored, an empty triangle is a set with so that the convex hull of is disjoint from . We say that is monochromatic if all points in are the same color.
Conjecture There exists a fixed constant with the following property. If is a set of points in general position which is 2-colored, then it has monochromatic empty triangles.
Conjecture Let be a finite family of finite sets, not all empty, that is closed under taking unions. Then there exists such that is an element of at least half the members of .
Conjecture If is the adjacency matrix of a -regular graph, then there is a symmetric signing of (i.e. replace some entries by ) so that the resulting matrix has all eigenvalues of magnitude at most .
Conjecture For all there is an integer such that every digraph of minimum outdegree at least contains a subdivision of a transitive tournament of order .
The crossing number of is the minimum number of crossings in all drawings of in the plane.
The -dimensional (hyper)cube is the graph whose vertices are all binary sequences of length , and two of the sequences are adjacent in if they differ in precisely one coordinate.