Problem Is it true for all , that every sufficiently large -connected graph without a minor has a set of vertices whose deletion results in a planar graph?
Let be a graph. If and are two integers, a -colouring of is a function from to such that for each edge . Given a list assignment of , i.e.~a mapping that assigns to every vertex a set of non-negative integers, an -colouring of is a mapping such that for every . A list assignment is a --list-assignment if and for each vertex . Given such a list assignment , the graph G is --colourable if there exists a --colouring , i.e. is both a -colouring and an -colouring. For any real number , the graph is --choosable if it is --colourable for every --list-assignment . Last, is circularly -choosable if it is --choosable for any , . The circular choosability (or circular list chromatic number or circular choice number) of G is
Problem What is the best upper bound on circular choosability for planar graphs?
Conjecture For , let be the statement that given any exact -coloring of the edges of a complete countably infinite graph (that is, a coloring with colors all of which must be used at least once), there exists an exactly -colored countably infinite complete subgraph. Then is true if and only if , , or .
A strong edge-colouring of a graph is a edge-colouring in which every colour class is an induced matching; that is, any two vertices belonging to distinct edges with the same colour are not adjacent. The strong chromatic index is the minimum number of colours in a strong edge-colouring of .
Problem has the homotopy-type of a product space where is the group of diffeomorphisms of the 4-ball which restrict to the identity on the boundary. Determine some (any?) homotopy or homology groups of .
Let denote the set of all permutations of . Let and denote respectively the number of increasing and the number of decreasing sequences of contiguous numbers in . Let denote the set of subsequences of with length at least three. Let denote .
A permutation is called a Roller Coaster permutation if . Let be the set of all Roller Coaster permutations in .
Conjecture For ,
\item If , then . \item If , then with .
Conjecture (Odd Sum conjecture) Given ,
\item If , then is odd for . \item If , then for all .
Conjecture Suppose with is a connected cubic graph admitting a -edge coloring. Then there is an edge such that the cubic graph homeomorphic to has a -edge coloring.
An alternating walk in a digraph is a walk so that the vertex is either the head of both and or the tail of both and for every . A digraph is universal if for every pair of edges , there is an alternating walk containing both and
Question Does there exist a locally finite highly arc transitive digraph which is universal?
If , are graphs, a function is called cycle-continuous if the pre-image of every element of the (binary) cycle space of is a member of the cycle space of .
Problem Does there exist an infinite set of graphs so that there is no cycle continuous mapping between and whenever ?
Let be a set, be the set of filters on ordered reverse to set-theoretic inclusion, be the set of principal filters on , let be an index set. Consider the filtrator .
Conjecture If is a completary multifuncoid of the form , then is a completary multifuncoid of the form .
See below for definition of all concepts and symbols used to in this conjecture.
Refer to this Web site for the theory which I now attempt to generalize.
Conjecture For which values of and are there bi-colored graphs on vertices and different colors with the property that all the monochromatic colorings have unit weight, and every other coloring cancels out?
Consider a set of great circles on a sphere with no three circles meeting at a point. The arrangement graph of has a vertex for each intersection point, and an edge for each arc directly connecting two intersection points. So this arrangement graph is 4-regular and planar.
Conjecture Every arrangement graph of a set of great circles is -colourable.
A covering design, or covering, is a family of -subsets, called blocks, chosen from a -set, such that each -subset is contained in at least one of the blocks. The number of blocks is the covering’s size, and the minimum size of such a covering is denoted by .
Problem Find a closed form, recurrence, or better bounds for . Find a procedure for constructing minimal coverings.