Random

F_d versus F_{d+1} ★★★

Author(s): Krajicek

Problem   Find a constant $ k $ such that for any $ d $ there is a sequence of tautologies of depth $ k $ that have polynomial (or quasi-polynomial) size proofs in depth $ d+1 $ Frege system $ F_{d+1} $ but requires exponential size $ F_d $ proofs.

Keywords: Frege system; short proof

Partition of a cubic 3-connected graphs into paths of length 2. ★★

Author(s): Kelmans

Problem   Does every $ 3 $-connected cubic graph on $ 3k $ vertices admit a partition into $ k $ paths of length $ 2 $?

Keywords:

Marvel Strike Force Cheats Generator Android Ios 2024 Cheats Generator (improved version) ★★

Author(s):

Marvel Strike Force Cheats Generator Android Ios 2024 Cheats Generator (improved version)

Keywords:

Woodall's Conjecture ★★★

Author(s): Woodall

Conjecture   If $ G $ is a directed graph with smallest directed cut of size $ k $, then $ G $ has $ k $ disjoint dijoins.

Keywords: digraph; packing

World of Warships Cheats Generator Link 2024 (Cheats Generator that work) ★★

Author(s):

World of Warships Cheats Generator Link 2024 (Cheats Generator that work)

Keywords:

The Erdos-Turan conjecture on additive bases ★★★★

Author(s): Erdos; Turan

Let $ B \subseteq {\mathbb N} $. The representation function $ r_B : {\mathbb N} \rightarrow {\mathbb N} $ for $ B $ is given by the rule $ r_B(k) = \#\{ (i,j) \in B \times B : i + j = k \} $. We call $ B $ an additive basis if $ r_B $ is never $ 0 $.

Conjecture   If $ B $ is an additive basis, then $ r_B $ is unbounded.

Keywords: additive basis; representation function

Reed's omega, delta, and chi conjecture ★★★

Author(s): Reed

For a graph $ G $, we define $ \Delta(G) $ to be the maximum degree, $ \omega(G) $ to be the size of the largest clique subgraph, and $ \chi(G) $ to be the chromatic number of $ G $.

Conjecture   $ \chi(G) \le \ceil{\frac{1}{2}(\Delta(G)+1) + \frac{1}{2}\omega(G)} $ for every graph $ G $.

Keywords: coloring

Legal Bleach Brave Souls Cheats Generator No Human Verification 2024 (No Surveys Needed) ★★

Author(s):

Legal Bleach Brave Souls Cheats Generator No Human Verification 2024 (No Surveys Needed)

Keywords:

Nearly spanning regular subgraphs ★★★

Author(s): Alon; Mubayi

Conjecture   For every $ \epsilon > 0 $ and every positive integer $ k $, there exists $ r_0 = r_0(\epsilon,k) $ so that every simple $ r $-regular graph $ G $ with $ r \ge r_0 $ has a $ k $-regular subgraph $ H $ with $ |V(H)| \ge (1- \epsilon) |V(G)| $.

Keywords: regular; subgraph

Growth of finitely presented groups ★★★

Author(s): Adyan

Problem   Does there exist a finitely presented group of intermediate growth?

Keywords: finitely presented; growth

Fortnite Working Generator V-Bucks Generator (NEW AND FREE) ★★

Author(s):

Fortnite Working Generator V-Bucks Generator (NEW AND FREE)

Keywords:

What is the largest graph of positive curvature?

Author(s): DeVos; Mohar

Problem   What is the largest connected planar graph of minimum degree 3 which has everywhere positive combinatorial curvature, but is not a prism or antiprism?

Keywords: curvature; planar graph

Book Thickness of Subdivisions ★★

Author(s): Blankenship; Oporowski

Let $ G $ be a finite undirected simple graph.

A $ k $-page book embedding of $ G $ consists of a linear order $ \preceq $ of $ V(G) $ and a (non-proper) $ k $-colouring of $ E(G) $ such that edges with the same colour do not cross with respect to $ \preceq $. That is, if $ v\prec x\prec w\prec y $ for some edges $ vw,xy\in E(G) $, then $ vw $ and $ xy $ receive distinct colours.

One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.

The book thickness of $ G $, denoted by bt$ (G) $ is the minimum integer $ k $ for which there is a $ k $-page book embedding of $ G $.

Let $ G' $ be the graph obtained by subdividing each edge of $ G $ exactly once.

Conjecture   There is a function $ f $ such that for every graph $ G $, $$   \text{bt}(G) \leq f( \text{bt}(G') )\enspace.   $$

Keywords: book embedding; book thickness

"Working Cheats" Sims FreePlay Simoleons Life Points and Social Points Generator No Human Verification 2024 ★★

Author(s):

"Working Cheats" Sims FreePlay Simoleons Life Points and Social Points Generator No Human Verification 2024

Keywords:

Large acyclic induced subdigraph in a planar oriented graph. ★★

Author(s): Harutyunyan

Conjecture   Every planar oriented graph $ D $ has an acyclic induced subdigraph of order at least $ \frac{3}{5} |V(D)| $.

Keywords:

Genshin Impact Cheats Generator 2024 Update (FREE) ★★

Author(s):

Genshin Impact Cheats Generator 2024 Update (FREE)

Keywords:

World of Warships Cheats Generator Free Strategy 2024 (The Legit Method) ★★

Author(s):

World of Warships Cheats Generator Free Strategy 2024 (The Legit Method)

Keywords:

Marvel Strike Force Cheats Generator Working (refreshed version) ★★

Author(s):

Marvel Strike Force Cheats Generator Working (refreshed version)

Keywords:

Strict inequalities for products of filters

Author(s): Porton

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} \subset \mathcal{A}   \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $. Particularly, is this formula true for $ \mathcal{A} = \mathcal{B} = \Delta \cap \uparrow^{\mathbb{R}} \left( 0 ; +   \infty \right) $?

A weaker conjecture:

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $.

Keywords: filter products

Ramsey properties of Cayley graphs ★★★

Author(s): Alon

Conjecture   There exists a fixed constant $ c $ so that every abelian group $ G $ has a subset $ S \subseteq G $ with $ -S = S $ so that the Cayley graph $ {\mathit Cayley}(G,S) $ has no clique or independent set of size $ > c \log |G| $.

Keywords: Cayley graph; Ramsey number

Rendezvous on a line ★★★

Author(s): Alpern

Problem   Two players start at a distance of 2 on an (undirected) line (so, neither player knows the direction of the other) and both move at a maximum speed of 1. What is the infimum expected meeting time $ R $ (first time when the players occupy the same point) which can be achieved assuming the two players must adopt the same strategy?

Keywords: game theory; optimization; rendezvous

Covering a square with unit squares ★★

Author(s):

Conjecture   For any integer $ n \geq 1 $, it is impossible to cover a square of side greater than $ n $ with $ n^2+1 $ unit squares.

Keywords:

Free Generator Sims FreePlay Working Simoleons Life Points and Social Points Cheats (Sims FreePlay Generator) ★★

Author(s):

Free Generator Sims FreePlay Working Simoleons Life Points and Social Points Cheats (Sims FreePlay Generator)

Keywords:

Cores of Cayley graphs ★★

Author(s): Samal

Conjecture   Let $ M $ be an abelian group. Is the core of a Cayley graph (on some power of $ M $) a Cayley graph (on some power of $ M $)?

Keywords: Cayley graph; core

Is there an algorithm to determine if a triangulated 4-manifold is combinatorially equivalent to the 4-sphere? ★★★

Author(s): Novikov

Problem   Is there an algorithm which takes as input a triangulated 4-manifold, and determines whether or not this manifold is combinatorially equivalent to the 4-sphere?

Keywords: 4-sphere; algorithm

MSO alternation hierarchy over pictures ★★

Author(s): Grandjean

Question   Is the MSO-alternation hierarchy strict for pictures that are balanced, in the sense that the width and the length are polynomially (or linearly) related.

Keywords: FMT12-LesHouches; MSO, alternation hierarchy; picture languages

New.updated Kim Kardashian Hollywood Cash Stars Cheats 2024 Free No Verification "Free" ★★

Author(s):

New.updated Kim Kardashian Hollywood Cash Stars Cheats 2024 Free No Verification "Free"

Keywords:

Fractional Hadwiger ★★

Author(s): Harvey; Reed; Seymour; Wood

Conjecture   For every graph $ G $,
(a) $ \chi_f(G)\leq\text{had}(G) $
(b) $ \chi(G)\leq\text{had}_f(G) $
(c) $ \chi_f(G)\leq\text{had}_f(G) $.

Keywords: fractional coloring, minors

Cycle Double Covers Containing Predefined 2-Regular Subgraphs ★★★

Author(s): Arthur; Hoffmann-Ostenhof

Conjecture   Let $ G $ be a $ 2 $-connected cubic graph and let $ S $ be a $ 2 $-regular subgraph such that $ G-E(S) $ is connected. Then $ G $ has a cycle double cover which contains $ S $ (i.e all cycles of $ S $).

Keywords:

Decomposing an even tournament in directed paths. ★★★

Author(s): Alspach; Mason; Pullman

Conjecture   Every tournament $ D $ on an even number of vertices can be decomposed into $ \sum_{v\in V}\max\{0,d^+(v)-d^-(v)\} $ directed paths.

Keywords:

Unit vector flows ★★

Author(s): Jain

Conjecture   For every graph $ G $ without a bridge, there is a flow $ \phi : E(G) \rightarrow S^2 = \{ x \in {\mathbb R}^3 : |x| = 1 \} $.

Conjecture   There exists a map $ q:S^2 \rightarrow \{-4,-3,-2,-1,1,2,3,4\} $ so that antipodal points of $ S^2 $ receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.

Keywords: nowhere-zero flow

Highly connected graphs with no K_n minor ★★★

Author(s): Thomas

Problem   Is it true for all $ n \ge 0 $, that every sufficiently large $ n $-connected graph without a $ K_n $ minor has a set of $ n-5 $ vertices whose deletion results in a planar graph?

Keywords: connectivity; minor

inverse of an integer matrix ★★

Author(s): Gregory

Question   I've been working on this for a long time and I'm getting nowhere. Could you help me or at least tell me where to look for help. Suppose D is an m-by-m diagonal matrix with integer elements all $ \ge 2 $. Suppose X is an m-by-n integer matrix $ (m \le n) $. Consider the partitioned matrix M = [D X]. Obviously M has full row rank so it has a right inverse of rational numbers. The question is, under what conditions does it have an integer right inverse? My guess, which I can't prove, is that the integers in each row need to be relatively prime.

Keywords: invertable matrices, integer matrices

Working Dragon Ball Legends Cheats Generator Online (No Survey) ★★

Author(s):

Working Dragon Ball Legends Cheats Generator Online (No Survey)

Keywords:

Partition of Complete Geometric Graph into Plane Trees ★★

Author(s):

Conjecture   Every complete geometric graph with an even number of vertices has a partition of its edge set into plane (i.e. non-crossing) spanning trees.

Keywords: complete geometric graph, edge colouring

Monadic second-order logic with cardinality predicates ★★

Author(s): Courcelle

The problem concerns the extension of Monadic Second Order Logic (over a binary relation representing the edge relation) with the following atomic formulas:

    \item $ \text{``}\,\mathrm{Card}(X) = \mathrm{Card}(Y)\,\text{''} $ \item $ \text{``}\,\mathrm{Card}(X) \text{ belongs to } A\,\text{''} $

where $ A $ is a fixed recursive set of integers.

Let us fix $ k $ and a closed formula $ F $ in this language.

Conjecture   Is it true that the validity of $ F $ for a graph $ G $ of tree-width at most $ k $ can be tested in polynomial time in the size of $ G $?

Keywords: bounded tree width; cardinality predicates; FMT03-Bedlewo; MSO

Refuting random 3SAT-instances on $O(n)$ clauses (weak form) ★★★

Author(s): Feige

Conjecture   For every rational $ \epsilon > 0 $ and every rational $ \Delta $, there is no polynomial-time algorithm for the following problem.

Given is a 3SAT (3CNF) formula $ I $ on $ n $ variables, for some $ n $, and $ m = \floor{\Delta n} $ clauses drawn uniformly at random from the set of formulas on $ n $ variables. Return with probability at least 0.5 (over the instances) that $ I $ is typical without returning typical for any instance with at least $ (1 - \epsilon)m $ simultaneously satisfiable clauses.

Keywords: NP; randomness in TCS; satisfiability

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (Reedem Today) ★★

Author(s):

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (Reedem Today)

Keywords:

Idle Miner Tycoon Cheats Generator 2024 Free No Verification (New.updated) ★★

Author(s):

Idle Miner Tycoon Cheats Generator 2024 Free No Verification (New.updated)

Keywords:

Fasted Way! For Free Star Stable Star Coins Jorvik Coins Cheats Working 2024 Android Ios ★★

Author(s):

Fasted Way! For Free Star Stable Star Coins Jorvik Coins Cheats Working 2024 Android Ios

Keywords:

Turán's problem for hypergraphs ★★

Author(s): Turan

Conjecture   Every simple $ 3 $-uniform hypergraph on $ 3n $ vertices which contains no complete $ 3 $-uniform hypergraph on four vertices has at most $ \frac12 n^2(5n-3) $ hyperedges.
Conjecture   Every simple $ 3 $-uniform hypergraph on $ 2n $ vertices which contains no complete $ 3 $-uniform hypergraph on five vertices has at most $ n^2(n-1) $ hyperedges.

Keywords:

War Thunder Golden Eagles Generator Working Cheats (refreshed version) ★★

Author(s):

War Thunder Golden Eagles Generator Working Cheats (refreshed version)

Keywords:

Geodesic cycles and Tutte's Theorem ★★

Author(s): Georgakopoulos; Sprüssel

Problem   If $ G $ is a $ 3 $-connected finite graph, is there an assignment of lengths $ \ell: E(G) \to \mathb R^+ $ to the edges of $ G $, such that every $ \ell $-geodesic cycle is peripheral?

Keywords: cycle space; geodesic cycles; peripheral cycles

Finding k-edge-outerplanar graph embeddings ★★

Author(s): Bentz

Conjecture   It has been shown that a $ k $-outerplanar embedding for which $ k $ is minimal can be found in polynomial time. Does a similar result hold for $ k $-edge-outerplanar graphs?

Keywords: planar graph; polynomial algorithm

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator (New 2024) ★★

Author(s):

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator (New 2024)

Keywords:

Cheats Free* Sims FreePlay Simoleons Life Points and Social Points Cheats 2024 No Human Verification ★★

Author(s):

Cheats Free* Sims FreePlay Simoleons Life Points and Social Points Cheats 2024 No Human Verification

Keywords:

World of Warships Cheats Generator Free Strategy 2024 (The Legit Method) ★★

Author(s):

World of Warships Cheats Generator Free Strategy 2024 (The Legit Method)

Keywords:

The three 4-flows conjecture ★★

Author(s): DeVos

Conjecture   For every graph $ G $ with no bridge, there exist three disjoint sets $ A_1,A_2,A_3 \subseteq E(G) $ with $ A_1 \cup A_2 \cup A_3 = E(G) $ so that $ G \setminus A_i $ has a nowhere-zero 4-flow for $ 1 \le i \le 3 $.

Keywords: nowhere-zero flow

Shuffle-Exchange Conjecture ★★

Author(s):

Shuffle-Exchange Conjecture

Keywords:

V-Bucks Generator Unlimited Generator (No Human Verification) ★★

Author(s):

V-Bucks Generator Unlimited Generator (No Human Verification)

Keywords: