Question I've been working on this for a long time and I'm getting nowhere. Could you help me or at least tell me where to look for help. Suppose D is an m-by-m diagonal matrix with integer elements all . Suppose X is an m-by-n integer matrix . Consider the partitioned matrix M = [D X]. Obviously M has full row rank so it has a right inverse of rational numbers. The question is, under what conditions does it have an integer right inverse? My guess, which I can't prove, is that the integers in each row need to be relatively prime.
Conjecture Every complete geometric graph with an even number of vertices has a partition of its edge set into plane (i.e. non-crossing) spanning trees.
Problem Is there a minimum integer such that the vertices of any digraph with minimum outdegree can be partitioned into two classes so that the minimum outdegree of the subgraph induced by each class is at least ?
Problem Ian Agol and Matthias Goerner observed that the 4x5 chessboard complex is the complement of many distinct links in the 3-sphere. Their observation is non-constructive, as it uses the resolution of the Poincare Conjecture. Find specific links that have the 4x5 chessboard complex as their complement.
Conjecture If is a bridgelesscubic graph, then there exist 6 perfect matchings of with the property that every edge of is contained in exactly two of .
Conjecture Can all problems that can be computed by a probabilistic Turing machine (with error probability < 1/3) in polynomial time be solved by a deterministic Turing machine in polynomial time? That is, does P = BPP?
We say that a set is -universal if every vertex planar graph can be drawn in the plane so that each vertex maps to a distinct point in , and all edges are (non-intersecting) straight line segments.
Question Does there exist an -universal set of size ?
Conjecture If a finite set of unit balls in is rearranged so that the distance between each pair of centers does not decrease, then the volume of the union of the balls does not decrease.
If , are graphs, a function is called cycle-continuous if the pre-image of every element of the (binary) cycle space of is a member of the cycle space of .
Problem Does there exist an infinite set of graphs so that there is no cycle continuous mapping between and whenever ?
An -factor in a graph is a set of vertex-disjoint copies of covering all vertices of .
Problem Let be a fixed positive real number and a fixed graph. Is it NP-hard to determine whether a graph on vertices and minimum degree contains and -factor?
Conjecture Every surreal number has a unique sign expansion, i.e. function , where is some ordinal. This is the length of given sign expansion and also the birthday of the corresponding surreal number. Let us denote this length of as .