Conjecture Let and are monovalued, entirely defined funcoids with . Then there exists a pointfree funcoid such that (for every filter on ) (The join operation is taken on the lattice of filters with reversed order.)
A positive solution of this problem may open a way to prove that some funcoids-related categories are cartesian closed.
Problem Determine a computable set of invariants that allow one to determine, given a compact boundaryless 3-manifold, whether or not it embeds smoothly in the 4-sphere. This should include a constructive procedure to find an embedding if the manifold is embeddable.
Given integers , the 2-stage Shuffle-Exchange graph/network, denoted , is the simple -regular bipartite graph with the ordered pair of linearly labeled parts and , where , such that vertices and are adjacent if and only if (see Fig.1).
Given integers , the -stage Shuffle-Exchange graph/network, denoted , is the proper (i.e., respecting all the orders) concatenation of identical copies of (see Fig.1).
Let be the smallest integer such that the graph is rearrangeable.
Let be a positive integer. We say that a graph is strongly -colorable if for every partition of the vertices to sets of size at most there is a proper -coloring of in which the vertices in each set of the partition have distinct colors.
Conjecture If is the maximal degree of a graph , then is strongly -colorable.
Let be a graph. If and are two integers, a -colouring of is a function from to such that for each edge . Given a list assignment of , i.e.~a mapping that assigns to every vertex a set of non-negative integers, an -colouring of is a mapping such that for every . A list assignment is a --list-assignment if and for each vertex . Given such a list assignment , the graph G is --colourable if there exists a --colouring , i.e. is both a -colouring and an -colouring. For any real number , the graph is --choosable if it is --colourable for every --list-assignment . Last, is circularly -choosable if it is --choosable for any , . The circular choosability (or circular list chromatic number or circular choice number) of G is
Problem What is the best upper bound on circular choosability for planar graphs?
Conjecture A total coloring of a graph is an assignment of colors to the vertices and the edges of such that every pair of adjacent vertices, every pair of adjacent edges and every vertex and incident edge pair, receive different colors. The total chromatic number of a graph , , equals the minimum number of colors needed in a total coloring of . It is an old conjecture of Behzad that for every graph , the total chromatic number equals the maximum degree of a vertex in , plus one or two. In other words,
Conjecture For every set of points in the plane, not all collinear, there is a point in contained in at least lines determined by , for some constant .
Conjecture Let be a graph and let such that for any pair there are edge-disjoint paths from to in . Then contains edge-disjoint trees, each of which contains .
Setup Fix a tree and for every vertex a non-negative integer which we think of as the amount of gold at .
2-Player game Players alternate turns. On each turn, a player chooses a leaf vertex of the tree, takes the gold at this vertex, and then deletes . The game ends when the tree is empty, and the winner is the player who has accumulated the most gold.