Random

Odd-cycle transversal in triangle-free graphs ★★

Author(s): Erdos; Faudree; Pach; Spencer

Conjecture   If $ G $ is a simple triangle-free graph, then there is a set of at most $ n^2/25 $ edges whose deletion destroys every odd cycle.

Keywords:

MONOPOLY GO Cheats Generator 2024 (Legal) ★★

Author(s):

MONOPOLY GO Cheats Generator 2024 (Legal)

Keywords:

8 Ball Pool Free Cash Strategy 2024 (The Legit Method) ★★

Author(s):

8 Ball Pool Free Cash Strategy 2024 (The Legit Method)

Keywords:

The large sets conjecture ★★★

Author(s): Brown; Graham; Landman

Conjecture   If $ A $ is 2-large, then $ A $ is large.

Keywords: 2-large sets; large sets

Free Super Meat Boy Forever Cheats No Human Verification No Survey (2024 Method) ★★

Author(s):

Free Super Meat Boy Forever Cheats No Human Verification No Survey (2024 Method)

Keywords:

Dice Dreams Cheats Generator Free Unlimited Cheats Generator (LATEST) ★★

Author(s):

Dice Dreams Cheats Generator Free Unlimited Cheats Generator (LATEST)

Keywords:

Fishdom Cheats Generator 2024 Edition Update (WORKS) ★★

Author(s):

Fishdom Cheats Generator 2024 Edition Update (WORKS)

Keywords:

Strong edge colouring conjecture ★★

Author(s): Erdos; Nesetril

A strong edge-colouring of a graph $ G $ is a edge-colouring in which every colour class is an induced matching; that is, any two vertices belonging to distinct edges with the same colour are not adjacent. The strong chromatic index $ s\chi'(G) $ is the minimum number of colours in a strong edge-colouring of $ G $.

Conjecture   $$s\chi'(G) \leq \frac{5\Delta^2}{4}, \text{if $\Delta$ is even,}$$ $$s\chi'(G) \leq \frac{5\Delta^2-2\Delta +1}{4},&\text{if $\Delta$ is odd.}$$

Keywords:

Free Generator Matchington Mansion Working Stars Coins Cheats (Matchington Mansion Generator) ★★

Author(s):

Free Generator Matchington Mansion Working Stars Coins Cheats (Matchington Mansion Generator)

Keywords:

Rainbow Six Siege Cheats Generator Android Ios No Survey 2024 (Current Version) ★★

Author(s):

Rainbow Six Siege Cheats Generator Android Ios No Survey 2024 (Current Version)

Keywords:

Free Jurassic Park Builder Cheats Generator Pro Apk (2024) ★★

Author(s):

Free Jurassic Park Builder Cheats Generator Pro Apk (2024)

Keywords:

Laplacian Degrees of a Graph ★★

Author(s): Guo

Conjecture   If $ G $ is a connected graph on $ n $ vertices, then $ c_k(G) \ge d_k(G) $ for $ k = 1, 2, \dots, n-1 $.

Keywords: degree sequence; Laplacian matrix

Extremal problem on the number of tree endomorphism ★★

Author(s): Zhicong Lin

Conjecture   An endomorphism of a graph is a mapping on the vertex set of the graph which preserves edges. Among all the $ n $ vertices' trees, the star with $ n $ vertices has the most endomorphisms, while the path with $ n $ vertices has the least endomorphisms.

Keywords:

Do any three longest paths in a connected graph have a vertex in common? ★★

Author(s): Gallai

Conjecture   Do any three longest paths in a connected graph have a vertex in common?

Keywords:

Subgraph of large average degree and large girth. ★★

Author(s): Thomassen

Conjecture   For all positive integers $ g $ and $ k $, there exists an integer $ d $ such that every graph of average degree at least $ d $ contains a subgraph of average degree at least $ k $ and girth greater than $ g $.

Keywords:

Discrete Logarithm Problem ★★★

Author(s):

If $ p $ is prime and $ g,h \in {\mathbb Z}_p^* $, we write $ \log_g(h) = n $ if $ n \in {\mathbb Z} $ satisfies $ g^n =  h $. The problem of finding such an integer $ n $ for a given $ g,h \in {\mathbb Z}^*_p $ (with $ g \neq 1 $) is the Discrete Log Problem.

Conjecture   There does not exist a polynomial time algorithm to solve the Discrete Log Problem.

Keywords: discrete log; NP

Kneser–Poulsen conjecture ★★★

Author(s): Kneser; Poulsen

Conjecture   If a finite set of unit balls in $ \mathbb{R}^n $ is rearranged so that the distance between each pair of centers does not decrease, then the volume of the union of the balls does not decrease.

Keywords: pushing disks

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method) ★★

Author(s):

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method)

Keywords:

The Hodge Conjecture ★★★★

Author(s): Hodge

Conjecture   Let $ X $ be a complex projective variety. Then every Hodge class is a rational linear combination of the cohomology classes of complex subvarieties of $ X $.

Keywords: Hodge Theory; Millenium Problems

SimCity BuildIt Cheats Generator No Human Verification (Without Surveys) ★★

Author(s):

SimCity BuildIt Cheats Generator No Human Verification (Without Surveys)

Keywords:

Perfect cuboid ★★

Author(s):

Conjecture   Does a perfect cuboid exist?

Keywords:

Characterizing (aleph_0,aleph_1)-graphs ★★★

Author(s): Diestel; Leader

Call a graph an $ (\aleph_0,\aleph_1) $-graph if it has a bipartition $ (A,B) $ so that every vertex in $ A $ has degree $ \aleph_0 $ and every vertex in $ B $ has degree $ \aleph_1 $.

Problem   Characterize the $ (\aleph_0,\aleph_1) $-graphs.

Keywords: binary tree; infinite graph; normal spanning tree; set theory

MONOPOLY GO Cheats Generator IOS Android No Verification 2024 (fresh method) ★★

Author(s):

MONOPOLY GO Cheats Generator IOS Android No Verification 2024 (fresh method)

Keywords:

Brawlhalla Cheats Generator 2024 No Human Veryfication (codes) ★★

Author(s):

Brawlhalla Cheats Generator 2024 No Human Veryfication (codes)

Keywords:

Polignac's Conjecture ★★★

Author(s): de Polignac

Conjecture   Polignac's Conjecture: For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n.

In particular, this implies:

Conjecture   Twin Prime Conjecture: There are an infinite number of twin primes.

Keywords: prime; prime gap

Hungry Shark Evolution Cheats Generator 2024 Cheats Generator Tested On Android Ios (WORKING TIPS) ★★

Author(s):

Hungry Shark Evolution Cheats Generator 2024 Cheats Generator Tested On Android Ios (WORKING TIPS)

Keywords:

List chromatic number and maximum degree of bipartite graphs ★★

Author(s): Alon

Conjecture   There is a constant $ c $ such that the list chromatic number of any bipartite graph $ G $ of maximum degree $ \Delta $ is at most $ c \log \Delta $.

Keywords:

Decomposing k-arc-strong tournament into k spanning strong digraphs ★★

Author(s): Bang-Jensen; Yeo

Conjecture   Every k-arc-strong tournament decomposes into k spanning strong digraphs.

Keywords:

Free Warframe Cheats Platinum Generator 2024 (Legal) ★★

Author(s):

Free Warframe Cheats Platinum Generator 2024 (Legal)

Keywords:

MSO alternation hierarchy over pictures ★★

Author(s): Grandjean

Question   Is the MSO-alternation hierarchy strict for pictures that are balanced, in the sense that the width and the length are polynomially (or linearly) related.

Keywords: FMT12-LesHouches; MSO, alternation hierarchy; picture languages

Exponential Algorithms for Knapsack ★★

Author(s): Lipton

Conjecture  

The famous 0-1 Knapsack problem is: Given $ a_{1},a_{2},\dots,a_{n} $ and $ b $ integers, determine whether or not there are $ 0-1 $ values $ x_{1},x_{2},\dots,x_{n} $ so that $$ \sum_{i=1}^{n} a_{i}x_{i} = b.$$ The best known worst-case algorithm runs in time $ 2^{n/2} $ times a polynomial in $ n $. Is there an algorithm that runs in time $ 2^{n/3} $?

Keywords: Algorithm construction; Exponential-time algorithm; Knapsack

Are different notions of the crossing number the same? ★★★

Author(s): Pach; Tóth

Problem   Does the following equality hold for every graph $ G $? \[ \text{pair-cr}(G) = \text{cr}(G) \]

The crossing number $ \text{cr}(G) $ of a graph $ G $ is the minimum number of edge crossings in any drawing of $ G $ in the plane. In the pairwise crossing number $ \text{pair-cr}(G) $, we minimize the number of pairs of edges that cross.

Keywords: crossing number; pair-crossing number

Fat 4-polytopes ★★★

Author(s): Eppstein; Kuperberg; Ziegler

The fatness of a 4-polytope $ P $ is defined to be $ (f_1 + f_2)/(f_0 + f_3) $ where $ f_i $ is the number of faces of $ P $ of dimension $ i $.

Question   Does there exist a fixed constant $ c $ so that every convex 4-polytope has fatness at most $ c $?

Keywords: f-vector; polytope

Raid Shadow Legends Cheats Generator Android Ios 2024 Cheats Generator (HOT) ★★

Author(s):

Raid Shadow Legends Cheats Generator Android Ios 2024 Cheats Generator (HOT)

Keywords:

Vertex Coloring of graph fractional powers ★★★

Author(s): Iradmusa

Conjecture   Let $ G $ be a graph and $ k $ be a positive integer. The $ k- $power of $ G $, denoted by $ G^k $, is defined on the vertex set $ V(G) $, by connecting any two distinct vertices $ x $ and $ y $ with distance at most $ k $. In other words, $ E(G^k)=\{xy:1\leq d_G(x,y)\leq k\} $. Also $ k- $subdivision of $ G $, denoted by $ G^\frac{1}{k} $, is constructed by replacing each edge $ ij $ of $ G $ with a path of length $ k $. Note that for $ k=1 $, we have $ G^\frac{1}{1}=G^1=G $.
Now we can define the fractional power of a graph as follows:
Let $ G $ be a graph and $ m,n\in \mathbb{N} $. The graph $ G^{\frac{m}{n}} $ is defined by the $ m- $power of the $ n- $subdivision of $ G $. In other words $ G^{\frac{m}{n}}\isdef (G^{\frac{1}{n}})^m $.
Conjecture. Let $ G $ be a connected graph with $ \Delta(G)\geq3 $ and $ m $ be a positive integer greater than 1. Then for any positive integer $ n>m $, we have $ \chi(G^{\frac{m}{n}})=\omega(G^\frac{m}{n}) $.
In [1], it was shown that this conjecture is true in some special cases.

Keywords: chromatic number, fractional power of graph, clique number

Golf Battle Free Cheats Generator 999,999k Free 2024 (Free Generator) ★★

Author(s):

Golf Battle Free Cheats Generator 999,999k Free 2024 (Free Generator)

Keywords:

Chromatic Number of Common Graphs ★★

Author(s): Hatami; Hladký; Kráľ; Norine; Razborov

Question   Do common graphs have bounded chromatic number?

Keywords: common graph

Frobenius number of four or more integers ★★

Author(s):

Problem   Find an explicit formula for Frobenius number $ g(a_1, a_2, \dots, a_n) $ of co-prime positive integers $ a_1, a_2, \dots, a_n $ for $ n\geq 4 $.

Keywords:

Fishing Clash Cheats Generator Free in 2024 (Premium For Free) ★★

Author(s):

Fishing Clash Cheats Generator Free in 2024 (Premium For Free)

Keywords:

What is the homotopy type of the group of diffeomorphisms of the 4-sphere? ★★★★

Author(s): Smale

Problem   $ Diff(S^4) $ has the homotopy-type of a product space $ Diff(S^4) \simeq \mathbb O_5 \times Diff(D^4) $ where $ Diff(D^4) $ is the group of diffeomorphisms of the 4-ball which restrict to the identity on the boundary. Determine some (any?) homotopy or homology groups of $ Diff(D^4) $.

Keywords: 4-sphere; diffeomorphisms

Colouring the square of a planar graph ★★

Author(s): Wegner

Conjecture   Let $ G $ be a planar graph of maximum degree $ \Delta $. The chromatic number of its square is
    \item at most $ 7 $ if $ \Delta =3 $, \item at most $ \Delta+5 $ if $ 4\leq\Delta\leq 7 $, \item at most $ \left\lfloor\frac32\,\Delta\right\rfloor+1 $ if $ \Delta\ge8 $.

Keywords:

Genshin Impact Cheats Generator Cheats Generator 2023-2024 (Free!!) ★★

Author(s):

Genshin Impact Cheats Generator Cheats Generator 2023-2024 (Free!!)

Keywords:

Open problem ★★

Author(s):

Open problem

Keywords:

Hamiltonian cycles in powers of infinite graphs ★★

Author(s): Georgakopoulos

Conjecture  
    \item If $ G $ is a countable connected graph then its third power is hamiltonian. \item If $ G $ is a 2-connected countable graph then its square is hamiltonian.

Keywords: hamiltonian; infinite graph

Cycles in Graphs of Large Chromatic Number ★★

Author(s): Brewster; McGuinness; Moore; Noel

Conjecture   If $ \chi(G)>k $, then $ G $ contains at least $ \frac{(k+1)(k-1)!}{2} $ cycles of length $ 0\bmod k $.

Keywords: chromatic number; cycles

KPZ Universality Conjectures ★★

Author(s):

Conjecture  

Keywords:

Quartic rationally derived polynomials ★★★

Author(s): Buchholz; MacDougall

Call a polynomial $ p \in {\mathbb Q}[x] $ rationally derived if all roots of $ p $ and the nonzero derivatives of $ p $ are rational.

Conjecture   There does not exist a quartic rationally derived polynomial $ p \in {\mathbb Q}[x] $ with four distinct roots.

Keywords: derivative; diophantine; elliptic; polynomial

Guide ★★

Author(s):

Guide

Keywords:

Negative association in uniform forests ★★

Author(s): Pemantle

Conjecture   Let $ G $ be a finite graph, let $ e,f \in E(G) $, and let $ F $ be the edge set of a forest chosen uniformly at random from all forests of $ G $. Then \[ {\mathbb P}(e \in F \mid f \in F}) \le {\mathbb P}(e \in F) \]

Keywords: forest; negative association

World of Warships Cheats Generator 2024 (generator!) ★★

Author(s):

World of Warships Cheats Generator 2024 (generator!)

Keywords: