Random

Alexa's Conjecture on Primality ★★

Author(s): Alexa

Definition   Let $ r_i $ be the unique integer (with respect to a fixed $ p\in\mathbb{N} $) such that

$$(2i+1)^{p-1} \equiv r_i \pmod p ~~\text{ and } ~ 0 \le r_i < p. $$

Conjecture   A natural number $ p \ge 8 $ is a prime iff $$ \displaystyle \sum_{i=1}^{\left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor} r_i = \left \lfloor \frac{\sqrt[3]p}{2} \right \rfloor $$

Keywords: primality

Free Matchington Mansion Cheats Stars Coins Generator 2024 (Legal) ★★

Author(s):

Free Matchington Mansion Cheats Stars Coins Generator 2024 (Legal)

Keywords:

KPZ Universality Conjectures ★★

Author(s):

Conjecture  

Keywords:

inverse of an integer matrix ★★

Author(s): Gregory

Question   I've been working on this for a long time and I'm getting nowhere. Could you help me or at least tell me where to look for help. Suppose D is an m-by-m diagonal matrix with integer elements all $ \ge 2 $. Suppose X is an m-by-n integer matrix $ (m \le n) $. Consider the partitioned matrix M = [D X]. Obviously M has full row rank so it has a right inverse of rational numbers. The question is, under what conditions does it have an integer right inverse? My guess, which I can't prove, is that the integers in each row need to be relatively prime.

Keywords: invertable matrices, integer matrices

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (Reedem Today) ★★

Author(s):

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (Reedem Today)

Keywords:

Closing Lemma for Diffeomorphism (Dynamical Systems) ★★★★

Author(s): Charles Pugh

Conjecture   Let $ f\in Diff^{r}(M) $ and $ p\in\omega_{f}  $. Then for any neighborhood $ V_{f}\subset Diff^{r}(M)  $ there is $ g\in V_{f} $ such that $ p $ is periodic point of $ g $

There is an analogous conjecture for flows ( $ C^{r} $ vector fields . In the case of diffeos this was proved by Charles Pugh for $ r = 1 $. In the case of Flows this has been solved by Sushei Hayahshy for $ r = 1 $ . But in the two cases the problem is wide open for $ r > 1 $

Keywords: Dynamics , Pertubation

Vertex Coloring of graph fractional powers ★★★

Author(s): Iradmusa

Conjecture   Let $ G $ be a graph and $ k $ be a positive integer. The $ k- $power of $ G $, denoted by $ G^k $, is defined on the vertex set $ V(G) $, by connecting any two distinct vertices $ x $ and $ y $ with distance at most $ k $. In other words, $ E(G^k)=\{xy:1\leq d_G(x,y)\leq k\} $. Also $ k- $subdivision of $ G $, denoted by $ G^\frac{1}{k} $, is constructed by replacing each edge $ ij $ of $ G $ with a path of length $ k $. Note that for $ k=1 $, we have $ G^\frac{1}{1}=G^1=G $.
Now we can define the fractional power of a graph as follows:
Let $ G $ be a graph and $ m,n\in \mathbb{N} $. The graph $ G^{\frac{m}{n}} $ is defined by the $ m- $power of the $ n- $subdivision of $ G $. In other words $ G^{\frac{m}{n}}\isdef (G^{\frac{1}{n}})^m $.
Conjecture. Let $ G $ be a connected graph with $ \Delta(G)\geq3 $ and $ m $ be a positive integer greater than 1. Then for any positive integer $ n>m $, we have $ \chi(G^{\frac{m}{n}})=\omega(G^\frac{m}{n}) $.
In [1], it was shown that this conjecture is true in some special cases.

Keywords: chromatic number, fractional power of graph, clique number

A discrete iteration related to Pierce expansions ★★

Author(s): Shallit

Conjecture   Let $ a > b > 0 $ be integers. Set $ b_1 = b $ and $ b_{i+1} = {a \bmod {b_i}} $ for $ i \geq 0 $. Eventually we have $ b_{n+1} = 0 $; put $ P(a,b) = n $.

Example: $ P(35, 22) = 7 $, since $ b_1 = 22 $, $ b_2 = 13 $, $ b_3 = 9 $, $ b_4 = 8 $, $ b_5 = 3 $, $ b_6 = 2 $, $ b_7 = 1 $, $ b_8 = 0 $.

Prove or disprove: $ P(a,b) = O((\log a)^2) $.

Keywords: Pierce expansions

Number of Cliques in Minor-Closed Classes ★★

Author(s): Wood

Question   Is there a constant $ c $ such that every $ n $-vertex $ K_t $-minor-free graph has at most $ c^tn $ cliques?

Keywords: clique; graph; minor

Question about 'solving' something ★★

Author(s):

Conjecture  

Keywords:

Raid Shadow Legends Cheats Generator Android Ios 2024 Cheats Generator (HOT) ★★

Author(s):

Raid Shadow Legends Cheats Generator Android Ios 2024 Cheats Generator (HOT)

Keywords:

Circular flow number of regular class 1 graphs ★★

Author(s): Steffen

A nowhere-zero $ r $-flow $ (D(G),\phi) $ on $ G $ is an orientation $ D $ of $ G $ together with a function $ \phi $ from the edge set of $ G $ into the real numbers such that $ 1 \leq |\phi(e)| \leq r-1 $, for all $ e \in E(G) $, and $ \sum_{e \in E^+(v)}\phi(e) = \sum_{e \in E^-(v)}\phi(e), \textrm{ for all } v \in V(G) $. The circular flow number of $ G $ is inf$ \{ r | G $ has a nowhere-zero $ r $-flow $ \} $, and it is denoted by $ F_c(G) $.

A graph with maximum vertex degree $ k $ is a class 1 graph if its edge chromatic number is $ k $.

Conjecture   Let $ t \geq 1 $ be an integer and $ G $ a $ (2t+1) $-regular graph. If $ G $ is a class 1 graph, then $ F_c(G) \leq 2 + \frac{2}{t} $.

Keywords: nowhere-zero flow, edge-colorings, regular graphs

eFootball 2023 Cheats Generator IOS Android No Verification 2024 (NEW STRATEGY) ★★

Author(s):

eFootball 2023 Cheats Generator IOS Android No Verification 2024 (NEW STRATEGY)

Keywords:

V-Bucks Generator Unlimited Generator (No Human Verification) ★★

Author(s):

V-Bucks Generator Unlimited Generator (No Human Verification)

Keywords:

Hedetniemi's Conjecture ★★★

Author(s): Hedetniemi

Conjecture   If $ G,H $ are simple finite graphs, then $ \chi(G \times H) = \min \{ \chi(G), \chi(H) \} $.

Here $ G \times H $ is the tensor product (also called the direct or categorical product) of $ G $ and $ H $.

Keywords: categorical product; coloring; homomorphism; tensor product

Hamilton decomposition of prisms over 3-connected cubic planar graphs ★★

Author(s): Alspach; Rosenfeld

Conjecture   Every prism over a $ 3 $-connected cubic planar graph can be decomposed into two Hamilton cycles.

Keywords:

Fishing Clash Cheats Generator IOS Android No Verification 2024 (Tips Strategy) ★★

Author(s):

Fishing Clash Cheats Generator IOS Android No Verification 2024 (Tips Strategy)

Keywords:

The circular embedding conjecture ★★★

Author(s): Haggard

Conjecture   Every 2-connected graph may be embedded in a surface so that the boundary of each face is a cycle.

Keywords: cover; cycle

Extension complexity of (convex) polygons ★★

Author(s):

The extension complexity of a polytope $ P $ is the minimum number $ q $ for which there exists a polytope $ Q $ with $ q $ facets and an affine mapping $ \pi $ with $ \pi(Q) = P $.

Question   Does there exists, for infinitely many integers $ n $, a convex polygon on $ n $ vertices whose extension complexity is $ \Omega(n) $?

Keywords: polytope, projection, extension complexity, convex polygon

KPZ Universality Conjecture ★★

Author(s):

KPZ Universality Conjecture

Keywords:

Saturation in the Hypercube ★★

Author(s): Morrison; Noel; Scott

Question   What is the saturation number of cycles of length $ 2\ell $ in the $ d $-dimensional hypercube?

Keywords: cycles; hypercube; minimum saturation; saturation

Gao's theorem for nonabelian groups ★★

Author(s): DeVos

For every finite multiplicative group $ G $, let $ s(G) $ ($ s'(G) $) denote the smallest integer $ m $ so that every sequence of $ m $ elements of $ G $ has a subsequence of length $ >0 $ (length $ |G| $) which has product equal to 1 in some order.

Conjecture   $ s'(G) = s(G) + |G| - 1 $ for every finite group $ G $.

Keywords: subsequence sum; zero sum

Circular colouring the orthogonality graph ★★

Author(s): DeVos; Ghebleh; Goddyn; Mohar; Naserasr

Let $ {\mathcal O} $ denote the graph with vertex set consisting of all lines through the origin in $ {\mathbb R}^3 $ and two vertices adjacent in $ {\mathcal O} $ if they are perpendicular.

Problem   Is $ \chi_c({\mathcal O}) = 4 $?

Keywords: circular coloring; geometric graph; orthogonality

Seymour's Second Neighbourhood Conjecture ★★★

Author(s): Seymour

Conjecture   Any oriented graph has a vertex whose outdegree is at most its second outdegree.

Keywords: Caccetta-Häggkvist; neighbourhood; second; Seymour

Idle Miner Tycoon Cheats Generator 2023-2024 (No Human Verification) ★★

Author(s):

Idle Miner Tycoon Cheats Generator 2023-2024 (No Human Verification)

Keywords:

Simpsons Tapped Out Cheats Generator (New Working Cheats Generator 2024) ★★

Author(s):

Simpsons Tapped Out Cheats Generator (New Working Cheats Generator 2024)

Keywords:

eFootball 2023 Cheats Generator Unlimited IOS Android No Survey 2024 (FREE METHOD) ★★

Author(s):

eFootball 2023 Cheats Generator Unlimited IOS Android No Survey 2024 (FREE METHOD)

Keywords:

Outer reloid of restricted funcoid ★★

Author(s): Porton

Question   $ ( \mathsf{RLD})_{\mathrm{out}} (f \cap^{\mathsf{FCD}} ( \mathcal{A} \times^{\mathsf{FCD}} \mathcal{B})) = (( \mathsf{RLD})_{\mathrm{out}} f) \cap^{\mathsf{RLD}} ( \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B}) $ for every filter objects $ \mathcal{A} $ and $ \mathcal{B} $ and a funcoid $ f\in\mathsf{FCD}(\mathrm{Src}\,f; \mathrm{Dst}\,f) $?

Keywords: direct product of filters; outer reloid

Which homology 3-spheres bound homology 4-balls? ★★★★

Author(s): Ancient/folklore

Problem   Is there a complete and computable set of invariants that can determine which (rational) homology $ 3 $-spheres bound (rational) homology $ 4 $-balls?

Keywords: cobordism; homology ball; homology sphere

Finding k-edge-outerplanar graph embeddings ★★

Author(s): Bentz

Conjecture   It has been shown that a $ k $-outerplanar embedding for which $ k $ is minimal can be found in polynomial time. Does a similar result hold for $ k $-edge-outerplanar graphs?

Keywords: planar graph; polynomial algorithm

Slice-ribbon problem ★★★★

Author(s): Fox

Conjecture   Given a knot in $ S^3 $ which is slice, is it a ribbon knot?

Keywords: cobordism; knot; ribbon; slice

Ryser's conjecture ★★★

Author(s): Ryser

Conjecture   Let $ H $ be an $ r $-uniform $ r $-partite hypergraph. If $ \nu $ is the maximum number of pairwise disjoint edges in $ H $, and $ \tau $ is the size of the smallest set of vertices which meets every edge, then $ \tau \le (r-1) \nu $.

Keywords: hypergraph; matching; packing

Special Primes

Author(s): George BALAN

Conjecture   Let $ p $ be a prime natural number. Find all primes $ q\equiv1\left(\mathrm{mod}\: p\right) $, such that $ 2^{\frac{\left(q-1\right)}{p}}\equiv1\left(\mathrm{mod}\: q\right) $.

Keywords:

Point sets with no empty pentagon

Author(s): Wood

Problem   Classify the point sets with no empty pentagon.

Keywords: combinatorial geometry; visibility graph

MONOPOLY GO Cheats Generator IOS Android No Verification 2024 (fresh method) ★★

Author(s):

MONOPOLY GO Cheats Generator IOS Android No Verification 2024 (fresh method)

Keywords:

Tarski's exponential function problem ★★

Author(s): Tarski

Conjecture   Is the theory of the real numbers with the exponential function decidable?

Keywords: Decidability

Cores of strongly regular graphs ★★★

Author(s): Cameron; Kazanidis

Question   Does every strongly regular graph have either itself or a complete graph as a core?

Keywords: core; strongly regular

Square achievement game on an n x n grid ★★

Author(s): Erickson

Problem   Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an $ n \times n $ grid. The first player (if any) to occupy four cells at the vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the game given optimal play? Note: Roland Bacher and Shalom Eliahou proved that every 15 x 15 binary matrix contains four equal entries (all 0's or all 1's) at the vertices of a square with horizontal and vertical sides. So the game must result in a winner (the first player) when n=15.

Keywords: game

Free Clash of Clans Gems Cheats 2024 Edition Update (WORKS!) ★★

Author(s):

Free Clash of Clans Gems Cheats 2024 Edition Update (WORKS!)

Keywords:

Real roots of the flow polynomial ★★

Author(s): Welsh

Conjecture   All real roots of nonzero flow polynomials are at most 4.

Keywords: flow polynomial; nowhere-zero flow

Rendezvous on a line ★★

Author(s):

Rendezvous on a line

Keywords:

Brawlhalla Cheats Generator 2024 No Human Veryfication (codes) ★★

Author(s):

Brawlhalla Cheats Generator 2024 No Human Veryfication (codes)

Keywords:

Signing a graph to have small magnitude eigenvalues ★★

Author(s): Bilu; Linial

Conjecture   If $ A $ is the adjacency matrix of a $ d $-regular graph, then there is a symmetric signing of $ A $ (i.e. replace some $ +1 $ entries by $ -1 $) so that the resulting matrix has all eigenvalues of magnitude at most $ 2 \sqrt{d-1} $.

Keywords: eigenvalue; expander; Ramanujan graph; signed graph; signing

Negative association in uniform forests ★★

Author(s): Pemantle

Conjecture   Let $ G $ be a finite graph, let $ e,f \in E(G) $, and let $ F $ be the edge set of a forest chosen uniformly at random from all forests of $ G $. Then \[ {\mathbb P}(e \in F \mid f \in F}) \le {\mathbb P}(e \in F) \]

Keywords: forest; negative association

Gta 5 Cheats Generator No Human Verification No Survey (Method 2024) ★★

Author(s):

Gta 5 Cheats Generator No Human Verification No Survey (Method 2024)

Keywords:

eFootball 2023 Cheats Generator Unlimited IOS Android No Survey 2024 (Reedem Today) ★★

Author(s):

eFootball 2023 Cheats Generator Unlimited IOS Android No Survey 2024 (Reedem Today)

Keywords:

Golf Battle Cheats Generator (Ios Android) ★★

Author(s):

Golf Battle Cheats Generator (Ios Android)

Keywords:

What is the largest graph of positive curvature?

Author(s): DeVos; Mohar

Problem   What is the largest connected planar graph of minimum degree 3 which has everywhere positive combinatorial curvature, but is not a prism or antiprism?

Keywords: curvature; planar graph

The additive basis conjecture ★★★

Author(s): Jaeger; Linial; Payan; Tarsi

Conjecture   For every prime $ p $, there is a constant $ c(p) $ (possibly $ c(p)=p $) so that the union (as multisets) of any $ c(p) $ bases of the vector space $ ({\mathbb Z}_p)^n $ contains an additive basis.

Keywords: additive basis; matrix

F_d versus F_{d+1} ★★★

Author(s): Krajicek

Problem   Find a constant $ k $ such that for any $ d $ there is a sequence of tautologies of depth $ k $ that have polynomial (or quasi-polynomial) size proofs in depth $ d+1 $ Frege system $ F_{d+1} $ but requires exponential size $ F_d $ proofs.

Keywords: Frege system; short proof