Conjecture There exists a fixed constant (probably suffices) so that every graft with minimum -cut size at least contains a -join packing of size at least .
An -factor in a graph is a set of vertex-disjoint copies of covering all vertices of .
Problem Let be a fixed positive real number and a fixed graph. Is it NP-hard to determine whether a graph on vertices and minimum degree contains and -factor?
Conjecture For every set of points in the plane, not all collinear, there is a point in contained in at least lines determined by , for some constant .
Conjecture The sequence {L(n) mod m}, where L(n) are the Lucas numbers, contains a complete residue system modulo m if and only if m is one of the following: 2, 4, 6, 7, 14, 3^k, k >=1.
Question I've been working on this for a long time and I'm getting nowhere. Could you help me or at least tell me where to look for help. Suppose D is an m-by-m diagonal matrix with integer elements all . Suppose X is an m-by-n integer matrix . Consider the partitioned matrix M = [D X]. Obviously M has full row rank so it has a right inverse of rational numbers. The question is, under what conditions does it have an integer right inverse? My guess, which I can't prove, is that the integers in each row need to be relatively prime.
Conjecture Polignac's Conjecture: For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n.
In particular, this implies:
Conjecture Twin Prime Conjecture: There are an infinite number of twin primes.
Let be a set, be the set of filters on ordered reverse to set-theoretic inclusion, be the set of principal filters on , let be an index set. Consider the filtrator .
Conjecture If is a completary multifuncoid of the form , then is a completary multifuncoid of the form .
See below for definition of all concepts and symbols used to in this conjecture.
Refer to this Web site for the theory which I now attempt to generalize.
Conjecture For which values of and are there bi-colored graphs on vertices and different colors with the property that all the monochromatic colorings have unit weight, and every other coloring cancels out?