Conjecture A total coloring of a graph is an assignment of colors to the vertices and the edges of such that every pair of adjacent vertices, every pair of adjacent edges and every vertex and incident edge pair, receive different colors. The total chromatic number of a graph , , equals the minimum number of colors needed in a total coloring of . It is an old conjecture of Behzad that for every graph , the total chromatic number equals the maximum degree of a vertex in , plus one or two. In other words,
Conjecture Let be the complete funcoid corresponding to the usual topology on extended real line . Let be the order on this set. Then is a complete funcoid.
Proposition It is easy to prove that is the infinitely small right neighborhood filter of point .
If proved true, the conjecture then can be generalized to a wider class of posets.
Conjecture Let is a family of multifuncoids such that each is of the form where is an index set for every and is a set for every . Let every for some multifuncoid of the form regarding the filtrator . Let is a graph-composition of (regarding some partition and external set ). Then there exist a multifuncoid of the form such that regarding the filtrator .
Conjecture Let is a -separable (the same as for symmetric transitive) compact funcoid and is a uniform space (reflexive, symmetric, and transitive endoreloid) such that . Then .
The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.
The direct proof may be constructed by correcting all errors an omissions in this draft article.
Direct proof could be better because with it we would get a little more general statement like this:
Conjecture Let be a -separable compact reflexive symmetric funcoid and be a reloid such that \item ; \item .
Conjecture Suppose that is a -edge-critical graph. Suppose that for each edge of , there is a list of colors. Then is -edge-colorable unless all lists are equal to each other.
Problem Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an grid. The first player (if any) to occupy a set of cells having no two cells in the same row or column is the winner. What is the outcome of the game given optimal play?
The crossing number of is the minimum number of crossings in all drawings of in the plane.
The -dimensional (hyper)cube is the graph whose vertices are all binary sequences of length , and two of the sequences are adjacent in if they differ in precisely one coordinate.
Question Is the binary affine cube the only 3-connected matroid for which equality holds in the bound where is the circumference (i.e. largest circuit size) of ?
For every finite multiplicative group , let () denote the smallest integer so that every sequence of elements of has a subsequence of length (length ) which has product equal to 1 in some order.