Conjecture There exists an integer such that every -arc-strong digraph with specified vertices and contains an out-branching rooted at and an in-branching rooted at which are arc-disjoint.
The zeroes of the Riemann zeta function that are inside the Critical Strip (i.e. the vertical strip of the complex plane where the real part of the complex variable is in ]0;1[), are actually located on the Critical line ( the vertical line of the complex plane with real part equal to 1/2)
The crossing number of is the minimum number of crossings in all drawings of in the plane.
The -dimensional (hyper)cube is the graph whose vertices are all binary sequences of length , and two of the sequences are adjacent in if they differ in precisely one coordinate.
Conjecture There exists a fixed constant (probably suffices) so that every graft with minimum -cut size at least contains a -join packing of size at least .
Problem Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an grid. The first player (if any) to occupy four cells at the vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the game given optimal play? Note: Roland Bacher and Shalom Eliahou proved that every 15 x 15 binary matrix contains four equal entries (all 0's or all 1's) at the vertices of a square with horizontal and vertical sides. So the game must result in a winner (the first player) when n=15.
Conjecture If is the adjacency matrix of a -regular graph, then there is a symmetric signing of (i.e. replace some entries by ) so that the resulting matrix has all eigenvalues of magnitude at most .
Conjecture Can all problems that can be computed by a probabilistic Turing machine (with error probability < 1/3) in polynomial time be solved by a deterministic Turing machine in polynomial time? That is, does P = BPP?
Problem Find a constant such that for any there is a sequence of tautologies of depth that have polynomial (or quasi-polynomial) size proofs in depth Frege system but requires exponential size proofs.