Random

Are all Mersenne Numbers with prime exponent square-free? ★★★

Author(s):

Conjecture   Are all Mersenne Numbers with prime exponent $ {2^p-1} $ Square free?

Keywords: Mersenne number

Marvel Strike Force Cheats Generator Android Ios 2024 Cheats Generator (HOT) ★★

Author(s):

Marvel Strike Force Cheats Generator Android Ios 2024 Cheats Generator (HOT)

Keywords:

Mastering Subway Surfers: Your Ultimate Guide to Cheats, Hacks, and Generators ★★

Author(s):

Conjecture  

Keywords:

Fire Kirin Generator Cheats 2024 (FREE!) ★★

Author(s):

Fire Kirin Generator Cheats 2024 (FREE!)

Keywords:

3-Decomposition Conjectures ★★

Author(s):

Conjecture  

Keywords:

Oriented trees in n-chromatic digraphs ★★★

Author(s): Burr

Conjecture   Every digraph with chromatic number at least $ 2k-2 $ contains every oriented tree of order $ k $ as a subdigraph.

Keywords:

Chromatic number of associahedron ★★

Author(s): Fabila-Monroy; Flores-Penaloza; Huemer; Hurtado; Urrutia; Wood

Conjecture   Associahedra have unbounded chromatic number.

Keywords: associahedron, graph colouring, chromatic number

Diophantine quintuple conjecture ★★

Author(s):

Definition   A set of m positive integers $ \{a_1, a_2, \dots, a_m\} $ is called a Diophantine $ m $-tuple if $ a_i\cdot a_j + 1 $ is a perfect square for all $ 1 \leq i < j \leq m $.
Conjecture  (1)   Diophantine quintuple does not exist.

It would follow from the following stronger conjecture [Da]:

Conjecture  (2)   If $ \{a, b, c, d\} $ is a Diophantine quadruple and $ d > \max \{a, b, c\} $, then $ d = a + b + c + 2bc + 2\sqrt{(ab+1)(ac+1)(bc+1)}. $

Keywords:

The Hodge Conjecture ★★★★

Author(s): Hodge

Conjecture   Let $ X $ be a complex projective variety. Then every Hodge class is a rational linear combination of the cohomology classes of complex subvarieties of $ X $.

Keywords: Hodge Theory; Millenium Problems

Gta 5 Cheats Generator 2024 No Human Verification (Brand New) ★★

Author(s):

Gta 5 Cheats Generator 2024 No Human Verification (Brand New)

Keywords:

Complete bipartite subgraphs of perfect graphs ★★

Author(s): Fox

Problem   Let $ G $ be a perfect graph on $ n $ vertices. Is it true that either $ G $ or $ \bar{G} $ contains a complete bipartite subgraph with bipartition $ (A,B) $ so that $ |A|, |B| \ge n^{1 - o(1)} $?

Keywords: perfect graph

Euler-Mascheroni constant ★★★

Author(s):

Question   Is Euler-Mascheroni constant an transcendental number?

Keywords: constant; Euler; irrational; Mascheroni; rational; transcendental

Sidorenko's Conjecture ★★★

Author(s): Sidorenko

Conjecture   For any bipartite graph $ H $ and graph $ G $, the number of homomorphisms from $ H $ to $ G $ is at least $ \left(\frac{2|E(G)|}{|V(G)|^2}\right)^{|E(H)|}|V(G)|^{|V(H)|} $.

Keywords: density problems; extremal combinatorics; homomorphism

Forcing a 2-regular minor ★★

Author(s): Reed; Wood

Conjecture   Every graph with average degree at least $ \frac{4}{3}t-2 $ contains every 2-regular graph on $ t $ vertices as a minor.

Keywords: minors

The Crossing Number of the Hypercube ★★

Author(s): Erdos; Guy

The crossing number $ cr(G) $ of $ G $ is the minimum number of crossings in all drawings of $ G $ in the plane.

The $ d $-dimensional (hyper)cube $ Q_d $ is the graph whose vertices are all binary sequences of length $ d $, and two of the sequences are adjacent in $ Q_d $ if they differ in precisely one coordinate.

Conjecture   $ \displaystyle \lim  \frac{cr(Q_d)}{4^d} = \frac{5}{32} $

Keywords: crossing number; hypercube

Triangle free strongly regular graphs ★★★

Author(s):

Problem   Is there an eighth triangle free strongly regular graph?

Keywords: strongly regular; triangle free

Snevily's conjecture ★★★

Author(s): Snevily

Conjecture   Let $ G $ be an abelian group of odd order and let $ A,B \subseteq G $ satisfy $ |A| = |B| = k $. Then the elements of $ A $ and $ B $ may be ordered $ A = \{a_1,\ldots,a_k\} $ and $ B = \{b_1,\ldots,b_k\} $ so that the sums $ a_1+b_1, a_2+b_2 \ldots, a_k + b_k $ are pairwise distinct.

Keywords: addition table; latin square; transversal

F_d versus F_{d+1} ★★★

Author(s): Krajicek

Problem   Find a constant $ k $ such that for any $ d $ there is a sequence of tautologies of depth $ k $ that have polynomial (or quasi-polynomial) size proofs in depth $ d+1 $ Frege system $ F_{d+1} $ but requires exponential size $ F_d $ proofs.

Keywords: Frege system; short proof

Extension complexity of (convex) polygons ★★

Author(s):

The extension complexity of a polytope $ P $ is the minimum number $ q $ for which there exists a polytope $ Q $ with $ q $ facets and an affine mapping $ \pi $ with $ \pi(Q) = P $.

Question   Does there exists, for infinitely many integers $ n $, a convex polygon on $ n $ vertices whose extension complexity is $ \Omega(n) $?

Keywords: polytope, projection, extension complexity, convex polygon

8 Ball Pool Free Cash Cheats Link 2024 (that work) ★★

Author(s):

8 Ball Pool Free Cash Cheats Link 2024 (that work)

Keywords:

Circular colouring the orthogonality graph ★★

Author(s): DeVos; Ghebleh; Goddyn; Mohar; Naserasr

Let $ {\mathcal O} $ denote the graph with vertex set consisting of all lines through the origin in $ {\mathbb R}^3 $ and two vertices adjacent in $ {\mathcal O} $ if they are perpendicular.

Problem   Is $ \chi_c({\mathcal O}) = 4 $?

Keywords: circular coloring; geometric graph; orthogonality

3 is a primitive root modulo primes of the form 16 q^4 + 1, where q>3 is prime ★★

Author(s):

Conjecture   $ 3~ $ is a primitive root modulo $ ~p $ for all primes $ ~p=16\cdot q^4+1 $, where $ ~q>3 $ is prime.

Keywords:

"New Cheats" Star Stable Star Coins Jorvik Coins Cheats Free 2024 ★★

Author(s):

"New Cheats" Star Stable Star Coins Jorvik Coins Cheats Free 2024

Keywords:

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator IOS Android 2024 (get codes) ★★

Author(s):

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator IOS Android 2024 (get codes)

Keywords:

War Thunder Unlimited Golden Eagles Cheats Generator 2024 (fresh strategy) ★★

Author(s):

War Thunder Unlimited Golden Eagles Cheats Generator 2024 (fresh strategy)

Keywords:

Open problem ★★

Author(s):

Open problem

Keywords:

Brawlhalla Cheats Generator 2024 Real Working (new method) ★★

Author(s):

Brawlhalla Cheats Generator 2024 Real Working (new method)

Keywords:

Warframe Cheats Generator (iOS Android 2024) ★★

Author(s):

Warframe Cheats Generator (iOS Android 2024)

Keywords:

Wide partition conjecture ★★

Author(s): Chow; Taylor

Conjecture   An integer partition is wide if and only if it is Latin.

Keywords:

5-flow conjecture ★★★★

Author(s): Tutte

Conjecture   Every bridgeless graph has a nowhere-zero 5-flow.

Keywords: cubic; nowhere-zero flow

Even vs. odd latin squares ★★★

Author(s): Alon; Tarsi

A latin square is even if the product of the signs of all of the row and column permutations is 1 and is odd otherwise.

Conjecture   For every positive even integer $ n $, the number of even latin squares of order $ n $ and the number of odd latin squares of order $ n $ are different.

Keywords: latin square

The Bermond-Thomassen Conjecture ★★

Author(s): Bermond; Thomassen

Conjecture   For every positive integer $ k $, every digraph with minimum out-degree at least $ 2k-1 $ contains $ k $ disjoint cycles.

Keywords: cycles

Cheats Free* Warzone COD points Cheats 2024 No Human Verification ★★

Author(s):

Cheats Free* Warzone COD points Cheats 2024 No Human Verification

Keywords:

A diagram about funcoids and reloids ★★

Author(s): Porton

Define for posets with order $ \sqsubseteq $:

  1. $ \Phi_{\ast} f = \lambda b \in \mathfrak{B}: \bigcup \{ x \in \mathfrak{A} \mid f x \sqsubseteq b \} $;
  2. $ \Phi^{\ast} f = \lambda b \in \mathfrak{A}: \bigcap \{ x \in \mathfrak{B} \mid f x \sqsupseteq b \} $.

Note that the above is a generalization of monotone Galois connections (with $ \max $ and $ \min $ replaced with suprema and infima).

Then we have the following diagram:

What is at the node "other" in the diagram is unknown.

Conjecture   "Other" is $ \lambda f\in\mathsf{FCD}: \top $.
Question   What repeated applying of $ \Phi_{\ast} $ and $ \Phi^{\ast} $ to "other" leads to? Particularly, does repeated applying $ \Phi_{\ast} $ and/or $ \Phi^{\ast} $ to the node "other" lead to finite or infinite sets?

Keywords: Galois connections

Average diameter of a bounded cell of a simple arrangement ★★

Author(s): Deza; Terlaky; Zinchenko

Conjecture   The average diameter of a bounded cell of a simple arrangement defined by $ n $ hyperplanes in dimension $ d $ is not greater than $ d $.

Keywords: arrangement; diameter; polytope

Are there an infinite number of lucky primes?

Author(s): Lazarus: Gardiner: Metropolis; Ulam

Conjecture   If every second positive integer except 2 is remaining, then every third remaining integer except 3, then every fourth remaining integer etc. , an infinite number of the remaining integers are prime.

Keywords: lucky; prime; seive

Cyclic spanning subdigraph with small cyclomatic number ★★

Author(s): Bondy

Conjecture   Let $ D $ be a digraph all of whose strong components are nontrivial. Then $ D $ contains a cyclic spanning subdigraph with cyclomatic number at most $ \alpha(D) $.

Keywords:

Solution to the Lonely Runner Conjecture ★★

Author(s):

Solution to the Lonely Runner Conjecture

Keywords:

MovieStarPlanet Generator Cheats 2024 (WORKING IN 5 SECOND) ★★

Author(s):

MovieStarPlanet Generator Cheats 2024 (WORKING IN 5 SECOND)

Keywords:

Vertex Cover Integrality Gap ★★

Author(s): Atserias

Conjecture   For every $ \varepsilon > 0 $ there is $ \delta > 0 $ such that, for every large $ n $, there are $ n $-vertex graphs $ G $ and $ H $ such that $ G \equiv_{\delta n}^{\mathrm{C}} H $ and $ \mathrm{vc}(G) \ge (2 - \varepsilon) \cdot \mathrm{vc}(H) $.

Keywords: counting quantifiers; FMT12-LesHouches

Minimal graphs with a prescribed number of spanning trees ★★

Author(s): Azarija; Skrekovski

Conjecture   Let $ n \geq 3 $ be an integer and let $ \alpha(n) $ denote the least integer $ k $ such that there exists a simple graph on $ k $ vertices having precisely $ n $ spanning trees. Then $  \alpha(n) = o(\log{n}). $

Keywords: number of spanning trees, asymptotics

Royal Match Free Coins Cheats 2024 Real Working New Method ★★

Author(s):

Royal Match Free Coins Cheats 2024 Real Working New Method

Keywords:

Weak saturation of the cube in the clique

Author(s): Morrison; Noel

Problem  

Determine $ \text{wsat}(K_n,Q_3) $.

Keywords: bootstrap percolation; hypercube; Weak saturation

Strong edge colouring conjecture ★★

Author(s): Erdos; Nesetril

A strong edge-colouring of a graph $ G $ is a edge-colouring in which every colour class is an induced matching; that is, any two vertices belonging to distinct edges with the same colour are not adjacent. The strong chromatic index $ s\chi'(G) $ is the minimum number of colours in a strong edge-colouring of $ G $.

Conjecture   $$s\chi'(G) \leq \frac{5\Delta^2}{4}, \text{if $\Delta$ is even,}$$ $$s\chi'(G) \leq \frac{5\Delta^2-2\Delta +1}{4},&\text{if $\Delta$ is odd.}$$

Keywords:

Monadic second-order logic with cardinality predicates ★★

Author(s): Courcelle

The problem concerns the extension of Monadic Second Order Logic (over a binary relation representing the edge relation) with the following atomic formulas:

    \item $ \text{``}\,\mathrm{Card}(X) = \mathrm{Card}(Y)\,\text{''} $ \item $ \text{``}\,\mathrm{Card}(X) \text{ belongs to } A\,\text{''} $

where $ A $ is a fixed recursive set of integers.

Let us fix $ k $ and a closed formula $ F $ in this language.

Conjecture   Is it true that the validity of $ F $ for a graph $ G $ of tree-width at most $ k $ can be tested in polynomial time in the size of $ G $?

Keywords: bounded tree width; cardinality predicates; FMT03-Bedlewo; MSO

Hamiltonian paths and cycles in vertex transitive graphs ★★★

Author(s): Lovasz

Problem   Does every connected vertex-transitive graph have a Hamiltonian path?

Keywords: cycle; hamiltonian; path; vertex-transitive

Unit vector flows ★★

Author(s): Jain

Conjecture   For every graph $ G $ without a bridge, there is a flow $ \phi : E(G) \rightarrow S^2 = \{ x \in {\mathbb R}^3 : |x| = 1 \} $.

Conjecture   There exists a map $ q:S^2 \rightarrow \{-4,-3,-2,-1,1,2,3,4\} $ so that antipodal points of $ S^2 $ receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.

Keywords: nowhere-zero flow

KPZ Universality Conjecture ★★

Author(s):

KPZ Universality Conjecture

Keywords:

Real Racing 3 Cheats Generator Tested on iOS and Android (Latest Method) ★★

Author(s):

Real Racing 3 Cheats Generator Tested on iOS and Android (Latest Method)

Keywords:

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method) ★★

Author(s):

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method)

Keywords: