Conjecture For all there is an integer such that every digraph of minimum outdegree at least contains a subdivision of a transitive tournament of order .
Suppose is a finite group, and is a positive integer dividing . Suppose that has exactly solutions to . Does it follow that these solutions form a subgroup of ?
Conjecture For every fixed and fixed colouring of with colours, there exists such that every colouring of the edges of contains either vertices whose edges are coloured according to or vertices whose edges are coloured with at most colours.
Problem Is there an algorithm which takes as input a triangulated 4-manifold, and determines whether or not this manifold is combinatorially equivalent to the 4-sphere?
If is a finite set of points which is 2-colored, an empty triangle is a set with so that the convex hull of is disjoint from . We say that is monochromatic if all points in are the same color.
Conjecture There exists a fixed constant with the following property. If is a set of points in general position which is 2-colored, then it has monochromatic empty triangles.
Problem What is the maximum number of colours needed to colour countries such that no two countries sharing a common border have the same colour in the case where each country consists of one region on earth and one region on the moon ?
Given integers , the 2-stage Shuffle-Exchange graph/network, denoted , is the simple -regular bipartite graph with the ordered pair of linearly labeled parts and , where , such that vertices and are adjacent if and only if (see Fig.1).
Given integers , the -stage Shuffle-Exchange graph/network, denoted , is the proper (i.e., respecting all the orders) concatenation of identical copies of (see Fig.1).
Let be the smallest integer such that the graph is rearrangeable.
Begin with the generating function for unrestricted partitions:
(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...
Now change some of the plus signs to minus signs. The resulting series will have coefficients congruent, mod 2, to the coefficients of the generating series for unrestricted partitions. I conjecture that the signs may be chosen such that all the coefficients of the series are either 1, -1, or zero.
Conjecture Let be the space of Diffeomorphisms on the connected , compact and boundaryles manifold M and the space of vector fields. There is a dense set ( ) such that exhibit a finite number of attractor whose basins cover Lebesgue almost all ambient space
This is a very Deep and Hard problem in Dynamical Systems . It present the dream of the dynamicist mathematicians .
Let be a positive integer. We say that a graph is strongly -colorable if for every partition of the vertices to sets of size at most there is a proper -coloring of in which the vertices in each set of the partition have distinct colors.
Conjecture If is the maximal degree of a graph , then is strongly -colorable.
Conjecture Suppose with is a connected cubic graph admitting a -edge coloring. Then there is an edge such that the cubic graph homeomorphic to has a -edge coloring.
Basic Question: Given any positive integer n, can any convex polygon be partitioned into n convex pieces so that all pieces have the same area and same perimeter?
Definitions: Define a Fair Partition of a polygon as a partition of it into a finite number of pieces so that every piece has both the same area and the same perimeter. Further, if all the resulting pieces are convex, call it a Convex Fair Partition.
Questions: 1. (Rephrasing the above 'basic' question) Given any positive integer n, can any convex polygon be convex fair partitioned into n pieces?
2. If the answer to the above is "Not always'', how does one decide the possibility of such a partition for a given convex polygon and a given n? And if fair convex partition is allowed by a specific convex polygon for a give n, how does one find the optimal convex fair partition that minimizes the total length of the cut segments?
3. Finally, what could one say about higher dimensional analogs of this question?
Conjecture: The authors tend to believe that the answer to the above 'basic' question is "yes". In other words they guess: Every convex polygon allows a convex fair partition into n pieces for any n
Conjecture Let be a circuit in a bridgeless cubic graph . Then there is a five cycle double cover of such that is a subgraph of one of these five cycles.
Problem Determine a computable set of invariants that allow one to determine, given a compact boundaryless 3-manifold, whether or not it embeds smoothly in the 4-sphere. This should include a constructive procedure to find an embedding if the manifold is embeddable.
Conjecture In the category of continuous funcoids (defined similarly to the category of topological spaces) the following is a direct categorical product:
\item Product morphism is defined similarly to the category of topological spaces. \item Product object is the sub-atomic product. \item Projections are sub-atomic projections.
See details, exact definitions, and attempted proofs here.