Random

Fasted Way! For Free Golf Battle Cheats Generator Working 2024 Android Ios ★★

Author(s):

Fasted Way! For Free Golf Battle Cheats Generator Working 2024 Android Ios

Keywords:

MONOPOLY GO Cheats Generator Unlimited IOS And Android No Survey 2024 (free!!) ★★

Author(s):

MONOPOLY GO Cheats Generator Unlimited IOS And Android No Survey 2024 (free!!)

Keywords:

MONOPOLY GO Cheats Generator 2024 (Legal) ★★

Author(s):

MONOPOLY GO Cheats Generator 2024 (Legal)

Keywords:

Hamiltonian cycles in powers of infinite graphs ★★

Author(s): Georgakopoulos

Conjecture  
    \item If $ G $ is a countable connected graph then its third power is hamiltonian. \item If $ G $ is a 2-connected countable graph then its square is hamiltonian.

Keywords: hamiltonian; infinite graph

Bleach Brave Souls Cheats Generator No Human Verification (Without Surveys) ★★

Author(s):

Bleach Brave Souls Cheats Generator No Human Verification (Without Surveys)

Keywords:

Brawlhalla Cheats Generator 2024 Real Working (new method) ★★

Author(s):

Brawlhalla Cheats Generator 2024 Real Working (new method)

Keywords:

Geometry Dash Free Gold Coins Stars Cheats 2024 (FREE!) ★★

Author(s):

Geometry Dash Free Gold Coins Stars Cheats 2024 (FREE!)

Keywords:

Reed's omega, delta, and chi conjecture ★★★

Author(s): Reed

For a graph $ G $, we define $ \Delta(G) $ to be the maximum degree, $ \omega(G) $ to be the size of the largest clique subgraph, and $ \chi(G) $ to be the chromatic number of $ G $.

Conjecture   $ \chi(G) \le \ceil{\frac{1}{2}(\Delta(G)+1) + \frac{1}{2}\omega(G)} $ for every graph $ G $.

Keywords: coloring

Real Racing 3 Cheats Generator Working 2024 (Real Racing 3 Generator) ★★

Author(s):

Real Racing 3 Cheats Generator Working 2024 (Real Racing 3 Generator)

Keywords:

Strict inequalities for products of filters

Author(s): Porton

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} \subset \mathcal{A}   \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $. Particularly, is this formula true for $ \mathcal{A} = \mathcal{B} = \Delta \cap \uparrow^{\mathbb{R}} \left( 0 ; +   \infty \right) $?

A weaker conjecture:

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $.

Keywords: filter products

Super Meat Boy Forever Points Cheats 2024 No Human Verification (Real) ★★

Author(s):

Super Meat Boy Forever Points Cheats 2024 No Human Verification (Real)

Keywords:

Are all Mersenne Numbers with prime exponent square-free? ★★★

Author(s):

Conjecture   Are all Mersenne Numbers with prime exponent $ {2^p-1} $ Square free?

Keywords: Mersenne number

Linial-Berge path partition duality ★★★

Author(s): Berge; Linial

Conjecture   The minimum $ k $-norm of a path partition on a directed graph $ D $ is no more than the maximal size of an induced $ k $-colorable subgraph.

Keywords: coloring; directed path; partition

Match Masters Free Coins Cheats 2024 (LEGIT) ★★

Author(s):

Match Masters Free Coins Cheats 2024 (LEGIT)

Keywords:

Highly connected graphs with no K_n minor ★★★

Author(s): Thomas

Problem   Is it true for all $ n \ge 0 $, that every sufficiently large $ n $-connected graph without a $ K_n $ minor has a set of $ n-5 $ vertices whose deletion results in a planar graph?

Keywords: connectivity; minor

Outward reloid of composition vs composition of outward reloids ★★

Author(s): Porton

Conjecture   For every composable funcoids $ f $ and $ g $ $$(\mathsf{RLD})_{\mathrm{out}}(g\circ f)\sqsupseteq(\mathsf{RLD})_{\mathrm{out}}g\circ(\mathsf{RLD})_{\mathrm{out}}f.$$

Keywords: outward reloid

Cheats Free* Warzone COD points Cheats 2024 No Human Verification ★★

Author(s):

Cheats Free* Warzone COD points Cheats 2024 No Human Verification

Keywords:

Extremal $4$-Neighbour Bootstrap Percolation in the Hypercube ★★

Author(s): Morrison; Noel

Problem   Determine the smallest percolating set for the $ 4 $-neighbour bootstrap process in the hypercube.

Keywords: bootstrap percolation; extremal combinatorics; hypercube; percolation

Chromatic number of $\frac{3}{3}$-power of graph ★★

Author(s):

Let $ G $ be a graph and $ m,n\in \mathbb{N} $. The graph $ G^{\frac{m}{n}} $ is defined to be the $ m $-power of the $ n $-subdivision of $ G $. In other words, $ G^{\frac{m}{n}}=(G^{\frac{1}{n}})^m $.

Conjecture   Let $ G $ be a graph with $ \Delta(G)\geq 2 $. Then $ \chi(G^{\frac{3}{3}})\leq 2\Delta(G)+1 $.

Keywords:

Free Warframe Cheats Platinum Generator 2024 (Legal) ★★

Author(s):

Free Warframe Cheats Platinum Generator 2024 (Legal)

Keywords:

Convex uniform 5-polytopes ★★

Author(s):

Problem   Enumerate all convex uniform 5-polytopes.

Keywords:

Domination in cubic graphs ★★

Author(s): Reed

Problem   Does every 3-connected cubic graph $ G $ satisfy $ \gamma(G) \le \lceil |G|/3 \rceil $ ?

Keywords: cubic graph; domination

Coin Master Spins Coins Cheats 2024 No Human Verification (Real) ★★

Author(s):

Coin Master Spins Coins Cheats 2024 No Human Verification (Real)

Keywords:

Star chromatic index of cubic graphs ★★

Author(s): Dvorak; Mohar; Samal

The star chromatic index $ \chi_s'(G) $ of a graph $ G $ is the minimum number of colors needed to properly color the edges of the graph so that no path or cycle of length four is bi-colored.

Question   Is it true that for every (sub)cubic graph $ G $, we have $ \chi_s'(G) \le 6 $?

Keywords: edge coloring; star coloring

Combinatorial covering designs

Author(s): Gordon; Mills; Rödl; Schönheim

A $ (v, k, t) $ covering design, or covering, is a family of $ k $-subsets, called blocks, chosen from a $ v $-set, such that each $ t $-subset is contained in at least one of the blocks. The number of blocks is the covering’s size, and the minimum size of such a covering is denoted by $ C(v, k, t) $.

Problem   Find a closed form, recurrence, or better bounds for $ C(v,k,t) $. Find a procedure for constructing minimal coverings.

Keywords: recreational mathematics

Simplexity of the n-cube ★★★

Author(s):

Question   What is the minimum cardinality of a decomposition of the $ n $-cube into $ n $-simplices?

Keywords: cube; decomposition; simplex

Legal* Free Coin Master Cheats Spins Coins Generator No Human Verification 2024 ★★

Author(s):

Legal* Free Coin Master Cheats Spins Coins Generator No Human Verification 2024

Keywords:

Golf Battle Cheats Generator (Ios Android) ★★

Author(s):

Golf Battle Cheats Generator (Ios Android)

Keywords:

Subgroup formed by elements of order dividing n ★★

Author(s): Frobenius

Conjecture  

Suppose $ G $ is a finite group, and $ n $ is a positive integer dividing $ |G| $. Suppose that $ G $ has exactly $ n $ solutions to $ x^{n} = 1 $. Does it follow that these solutions form a subgroup of $ G $?

Keywords: order, dividing

Family Island Cheats Generator 2023-2024 (No Human Verification) ★★

Author(s):

Family Island Cheats Generator 2023-2024 (No Human Verification)

Keywords:

Subset-sums equality (pigeonhole version) ★★★

Author(s):

Problem   Let $ a_1,a_2,\ldots,a_n $ be natural numbers with $ \sum_{i=1}^n a_i < 2^n - 1 $. It follows from the pigeon-hole principle that there exist distinct subsets $ I,J \subseteq \{1,\ldots,n\} $ with $ \sum_{i \in I} a_i = \sum_{j \in J} a_j $. Is it possible to find such a pair $ I,J $ in polynomial time?

Keywords: polynomial algorithm; search problem

Shuffle-Exchange Conjecture ★★★

Author(s): Beneš; Folklore; Stone

Given integers $ k,n\ge2 $, let $ d(k,n) $ be the smallest integer $ d\ge2 $ such that the symmetric group $ \frak S $ on the set of all words of length $ n $ over a $ k $-letter alphabet can be generated as $ \frak S = (\sigma \frak G)^d:=\sigma\frak G \sigma\frak G \dots \sigma\frak G $ ($ d $ times), where $ \sigma\in \frak S $ is the shuffle permutation defined by $ \sigma(x_1 x_2 \dots x_{n}) = x_2 \dots x_{n} x_1 $, and $ \frak G $ is the exchange group consisting of all permutations in $ \frak S $ preserving the first $ n-1 $ letters in the words.

Problem  (SE)   Evaluate $ d(k,n) $.
Conjecture  (SE)   $ d(k,n)=2n-1 $, for all $ k,n\ge2 $.

Keywords:

Length of surreal product

Author(s): Gonshor

Conjecture   Every surreal number has a unique sign expansion, i.e. function $ f: o\rightarrow \{-, +\} $, where $ o $ is some ordinal. This $ o $ is the length of given sign expansion and also the birthday of the corresponding surreal number. Let us denote this length of $ s $ as $ \ell(s) $.

It is easy to prove that

$$ \ell(s+t) \leq \ell(s)+\ell(t) $$

What about

$$ \ell(s\times t) \leq \ell(s)\times\ell(t) $$

?

Keywords: surreal numbers

Saturation in the Hypercube ★★

Author(s): Morrison; Noel; Scott

Question   What is the saturation number of cycles of length $ 2\ell $ in the $ d $-dimensional hypercube?

Keywords: cycles; hypercube; minimum saturation; saturation

Yu Gi Oh Duel Links Cheats Generator 2024 (No Human Verification) ★★

Author(s):

Yu Gi Oh Duel Links Cheats Generator 2024 (No Human Verification)

Keywords:

Woodall's Conjecture ★★★

Author(s): Woodall

Conjecture   If $ G $ is a directed graph with smallest directed cut of size $ k $, then $ G $ has $ k $ disjoint dijoins.

Keywords: digraph; packing

Kneser–Poulsen conjecture ★★★

Author(s): Kneser; Poulsen

Conjecture   If a finite set of unit balls in $ \mathbb{R}^n $ is rearranged so that the distance between each pair of centers does not decrease, then the volume of the union of the balls does not decrease.

Keywords: pushing disks

Edge-disjoint Hamilton cycles in highly strongly connected tournaments. ★★

Author(s): Thomassen

Conjecture   For every $ k\geq 2 $, there is an integer $ f(k) $ so that every strongly $ f(k) $-connected tournament has $ k $ edge-disjoint Hamilton cycles.

Keywords:

Matching cut and girth ★★

Author(s):

Question   For every $ d $ does there exists a $ g $ such that every graph with average degree smaller than $ d $ and girth at least $ g $ has a matching-cut?

Keywords: matching cut, matching, cut

Raid Shadow Legends Cheats Generator Android Ios 2024 Cheats Generator (HOT) ★★

Author(s):

Raid Shadow Legends Cheats Generator Android Ios 2024 Cheats Generator (HOT)

Keywords:

8 Ball Pool Free Cash Cheats Link 2024 (that work) ★★

Author(s):

8 Ball Pool Free Cash Cheats Link 2024 (that work)

Keywords:

Aharoni-Berger conjecture ★★★

Author(s): Aharoni; Berger

Conjecture   If $ M_1,\ldots,M_k $ are matroids on $ E $ and $ \sum_{i=1}^k rk_{M_i}(X_i) \ge \ell (k-1) $ for every partition $ \{X_1,\ldots,X_k\} $ of $ E $, then there exists $ X \subseteq E $ with $ |X| = \ell $ which is independent in every $ M_i $.

Keywords: independent set; matroid; partition

Working My Singing Monsters Cheats Generator Online (No Survey) ★★

Author(s):

Working My Singing Monsters Cheats Generator Online (No Survey)

Keywords:

Unused Free Kim Kardashian Hollywood Cheats No Human Verification No Survey (2024 Method) ★★

Author(s):

Unused Free Kim Kardashian Hollywood Cheats No Human Verification No Survey (2024 Method)

Keywords:

Circular colouring the orthogonality graph ★★

Author(s): DeVos; Ghebleh; Goddyn; Mohar; Naserasr

Let $ {\mathcal O} $ denote the graph with vertex set consisting of all lines through the origin in $ {\mathbb R}^3 $ and two vertices adjacent in $ {\mathcal O} $ if they are perpendicular.

Problem   Is $ \chi_c({\mathcal O}) = 4 $?

Keywords: circular coloring; geometric graph; orthogonality

Fasted Way! For Free Star Stable Star Coins Jorvik Coins Cheats Working 2024 Android Ios ★★

Author(s):

Fasted Way! For Free Star Stable Star Coins Jorvik Coins Cheats Working 2024 Android Ios

Keywords:

Circular flow number of regular class 1 graphs ★★

Author(s): Steffen

A nowhere-zero $ r $-flow $ (D(G),\phi) $ on $ G $ is an orientation $ D $ of $ G $ together with a function $ \phi $ from the edge set of $ G $ into the real numbers such that $ 1 \leq |\phi(e)| \leq r-1 $, for all $ e \in E(G) $, and $ \sum_{e \in E^+(v)}\phi(e) = \sum_{e \in E^-(v)}\phi(e), \textrm{ for all } v \in V(G) $. The circular flow number of $ G $ is inf$ \{ r | G $ has a nowhere-zero $ r $-flow $ \} $, and it is denoted by $ F_c(G) $.

A graph with maximum vertex degree $ k $ is a class 1 graph if its edge chromatic number is $ k $.

Conjecture   Let $ t \geq 1 $ be an integer and $ G $ a $ (2t+1) $-regular graph. If $ G $ is a class 1 graph, then $ F_c(G) \leq 2 + \frac{2}{t} $.

Keywords: nowhere-zero flow, edge-colorings, regular graphs

Degenerate colorings of planar graphs ★★★

Author(s): Borodin

A graph $ G $ is $ k $-degenerate if every subgraph of $ G $ has a vertex of degree $ \le k $.

Conjecture   Every simple planar graph has a 5-coloring so that for $ 1 \le k \le 4 $, the union of any $ k $ color classes induces a $ (k-1) $-degenerate graph.

Keywords: coloring; degenerate; planar

Real Racing 3 Cheats Generator in a few minutes new Cheats Generator 2024 (No Survey) ★★

Author(s):

Real Racing 3 Cheats Generator in a few minutes new Cheats Generator 2024 (No Survey)

Keywords:

V-Bucks Generator Unlimited IOS Android No Survey 2024 (FREE METHOD) ★★

Author(s):

V-Bucks Generator Unlimited IOS Android No Survey 2024 (FREE METHOD)

Keywords: