Let be a set of points in the plane. Two points and in are visible with respect to if the line segment between and contains no other point in .
Conjecture For all integers there is an integer such that every set of at least points in the plane contains at least collinear points or pairwise visible points.
Conjecture Let be the space of Diffeomorphisms on the connected , compact and boundaryles manifold M and the space of vector fields. There is a dense set ( ) such that exhibit a finite number of attractor whose basins cover Lebesgue almost all ambient space
This is a very Deep and Hard problem in Dynamical Systems . It present the dream of the dynamicist mathematicians .
Problem Ian Agol and Matthias Goerner observed that the 4x5 chessboard complex is the complement of many distinct links in the 3-sphere. Their observation is non-constructive, as it uses the resolution of the Poincare Conjecture. Find specific links that have the 4x5 chessboard complex as their complement.
We say that a set is -universal if every vertex planar graph can be drawn in the plane so that each vertex maps to a distinct point in , and all edges are (non-intersecting) straight line segments.
Question Does there exist an -universal set of size ?
Conjecture For every positive integer , there exists an integer so that every polytope of dimension has a -dimensional face which is either a simplex or is combinatorially isomorphic to a -dimensional cube.
Conjecture The largest measure of a Lebesgue measurable subset of the unit sphere of containing no pair of orthogonal vectors is attained by two open caps of geodesic radius around the north and south poles.
Conjecture Polignac's Conjecture: For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n.
In particular, this implies:
Conjecture Twin Prime Conjecture: There are an infinite number of twin primes.
Problem Consider the set of all topologically inequivalent polyhedra with edges. Define a form parameter for a polyhedron as where is the number of vertices. What is the distribution of for ?
Conjecture Let is a -separable (the same as for symmetric transitive) compact funcoid and is a uniform space (reflexive, symmetric, and transitive endoreloid) such that . Then .
The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.
The direct proof may be constructed by correcting all errors an omissions in this draft article.
Direct proof could be better because with it we would get a little more general statement like this:
Conjecture Let be a -separable compact reflexive symmetric funcoid and be a reloid such that \item ; \item .
A -page book embedding of consists of a linear order of and a (non-proper) -colouring of such that edges with the same colour do not cross with respect to . That is, if for some edges , then and receive distinct colours.
One can think that the vertices are placed along the spine of a book, and the edges are drawn without crossings on the pages of the book.
The book thickness of , denoted by bt is the minimum integer for which there is a -page book embedding of .
Let be the graph obtained by subdividing each edge of exactly once.
Conjecture There is a function such that for every graph ,
Conjecture If a finite set of unit balls in is rearranged so that the distance between each pair of centers does not decrease, then the volume of the union of the balls does not decrease.
Conjecture An endomorphism of a graph is a mapping on the vertex set of the graph which preserves edges. Among all the vertices' trees, the star with vertices has the most endomorphisms, while the path with vertices has the least endomorphisms.
Problem Let be positve integer Does there exists an integer such that every -strong tournament admits a partition of its vertex set such that the subtournament induced by is a non-trivial -strong for all .
Problem Is there a problem that can be computed by a Turing machine in polynomial space and unbounded time but not in polynomial time? More formally, does P = PSPACE?