Random

3-Decomposition Conjectures ★★

Author(s):

Conjecture  

Keywords:

Hungry Shark World Cheats Generator 2024 (fresh strategy) ★★

Author(s):

Hungry Shark World Cheats Generator 2024 (fresh strategy)

Keywords:

Atomicity of the poset of multifuncoids ★★

Author(s): Porton

Conjecture   The poset of multifuncoids of the form $ (\mathscr{P}\mho)^n $ is for every sets $ \mho $ and $ n $:
    \item atomic; \item atomistic.

See below for definition of all concepts and symbols used to in this conjecture.

Refer to this Web site for the theory which I now attempt to generalize.

Keywords: multifuncoid

Circular flow numbers of $r$-graphs ★★

Author(s): Steffen

A nowhere-zero $ r $-flow $ (D(G),\phi) $ on $ G $ is an orientation $ D $ of $ G $ together with a function $ \phi $ from the edge set of $ G $ into the real numbers such that $ 1 \leq |\phi(e)| \leq r-1 $, for all $ e \in E(G) $, and $ \sum_{e \in E^+(v)}\phi(e) = \sum_{e \in E^-(v)}\phi(e), \textrm{ for all } v \in V(G) $.

A $ (2t+1) $-regular graph $ G $ is a $ (2t+1) $-graph if $ |\partial_G(X)| \geq 2t+1 $ for every $ X \subseteq V(G) $ with $ |X| $ odd.

Conjecture   Let $ t > 1 $ be an integer. If $ G $ is a $ (2t+1) $-graph, then $ F_c(G) \leq 2 + \frac{2}{t} $.

Keywords: flow conjectures; nowhere-zero flows

Do any three longest paths in a connected graph have a vertex in common? ★★

Author(s): Gallai

Conjecture   Do any three longest paths in a connected graph have a vertex in common?

Keywords:

Free Hollywood Story Free Diamonds Gems Cheats 2024 (Safe) ★★

Author(s):

Free Hollywood Story Free Diamonds Gems Cheats 2024 (Safe)

Keywords:

Golf Battle Cheats Generator (Ios Android) ★★

Author(s):

Golf Battle Cheats Generator (Ios Android)

Keywords:

Chowla's cosine problem ★★★

Author(s): Chowla

Problem   Let $ A \subseteq {\mathbb N} $ be a set of $ n $ positive integers and set \[m(A) = - \min_x \sum_{a \in A} \cos(ax).\] What is $ m(n) = \min_A m(A) $?

Keywords: circle; cosine polynomial

Gao's theorem for nonabelian groups ★★

Author(s): DeVos

For every finite multiplicative group $ G $, let $ s(G) $ ($ s'(G) $) denote the smallest integer $ m $ so that every sequence of $ m $ elements of $ G $ has a subsequence of length $ >0 $ (length $ |G| $) which has product equal to 1 in some order.

Conjecture   $ s'(G) = s(G) + |G| - 1 $ for every finite group $ G $.

Keywords: subsequence sum; zero sum

Legal* Free Coin Master Cheats Spins Coins Generator No Human Verification 2024 ★★

Author(s):

Legal* Free Coin Master Cheats Spins Coins Generator No Human Verification 2024

Keywords:

Cycle double cover conjecture ★★★★

Author(s): Seymour; Szekeres

Conjecture   For every graph with no bridge, there is a list of cycles so that every edge is contained in exactly two.

Keywords: cover; cycle

MSO alternation hierarchy over pictures ★★

Author(s): Grandjean

Question   Is the MSO-alternation hierarchy strict for pictures that are balanced, in the sense that the width and the length are polynomially (or linearly) related.

Keywords: FMT12-LesHouches; MSO, alternation hierarchy; picture languages

Circular flow number of regular class 1 graphs ★★

Author(s): Steffen

A nowhere-zero $ r $-flow $ (D(G),\phi) $ on $ G $ is an orientation $ D $ of $ G $ together with a function $ \phi $ from the edge set of $ G $ into the real numbers such that $ 1 \leq |\phi(e)| \leq r-1 $, for all $ e \in E(G) $, and $ \sum_{e \in E^+(v)}\phi(e) = \sum_{e \in E^-(v)}\phi(e), \textrm{ for all } v \in V(G) $. The circular flow number of $ G $ is inf$ \{ r | G $ has a nowhere-zero $ r $-flow $ \} $, and it is denoted by $ F_c(G) $.

A graph with maximum vertex degree $ k $ is a class 1 graph if its edge chromatic number is $ k $.

Conjecture   Let $ t \geq 1 $ be an integer and $ G $ a $ (2t+1) $-regular graph. If $ G $ is a class 1 graph, then $ F_c(G) \leq 2 + \frac{2}{t} $.

Keywords: nowhere-zero flow, edge-colorings, regular graphs

House Of Fun Cheats Generator Free Unlimited Cheats Generator (new codes Generator) ★★

Author(s):

House Of Fun Cheats Generator Free Unlimited Cheats Generator (new codes Generator)

Keywords:

Dragon Ball Legends Cheats Generator Ios and Android 2024 (Working Generator) ★★

Author(s):

Dragon Ball Legends Cheats Generator Ios and Android 2024 (Working Generator)

Keywords:

Distribution and upper bound of mimic numbers ★★

Author(s): Bhattacharyya

Problem  

Let the notation $ a|b $ denote ''$ a $ divides $ b $''. The mimic function in number theory is defined as follows [1].

Definition   For any positive integer $ \mathcal{N} = \sum_{i=0}^{n}\mathcal{X}_{i}\mathcal{M}^{i} $ divisible by $ \mathcal{D} $, the mimic function, $ f(\mathcal{D} | \mathcal{N}) $, is given by,

$$ f(\mathcal{D} | \mathcal{N}) = \sum_{i=0}^{n}\mathcal{X}_{i}(\mathcal{M}-\mathcal{D})^{i} $$

By using this definition of mimic function, the mimic number of any non-prime integer is defined as follows [1].

Definition   The number $ m $ is defined to be the mimic number of any positive integer $ \mathcal{N} = \sum_{i=0}^{n}\mathcal{X}_{i}\mathcal{M}^{i} $, with respect to $ \mathcal{D} $, for the minimum value of which $ f^{m}(\mathcal{D} | \mathcal{N}) = \mathcal{D} $.

Given these two definitions and a positive integer $ \mathcal{D} $, find the distribution of mimic numbers of those numbers divisible by $ \mathcal{D} $.

Again, find whether there is an upper bound of mimic numbers for a set of numbers divisible by any fixed positive integer $ \mathcal{D} $.

Keywords: Divisibility; mimic function; mimic number

Yu Gi Oh Duel Links Cheats Generator 2024 (safe and working) ★★

Author(s):

Yu Gi Oh Duel Links Cheats Generator 2024 (safe and working)

Keywords:

Long directed cycles in diregular digraphs ★★★

Author(s): Jackson

Conjecture   Every strong oriented graph in which each vertex has indegree and outdegree at least $ d $ contains a directed cycle of length at least $ 2d+1 $.

Keywords:

Shannon capacity of the seven-cycle ★★★

Author(s):

Problem   What is the Shannon capacity of $ C_7 $?

Keywords:

"New Cheats" Star Stable Star Coins Jorvik Coins Cheats Free 2024 ★★

Author(s):

"New Cheats" Star Stable Star Coins Jorvik Coins Cheats Free 2024

Keywords:

Fishdom Cheats Generator Cheats Generator 2023-2024 (Free!!) ★★

Author(s):

Fishdom Cheats Generator Cheats Generator 2023-2024 (Free!!)

Keywords:

Switching reconstruction conjecture ★★

Author(s): Stanley

Conjecture   Every simple graph on five or more vertices is switching-reconstructible.

Keywords: reconstruction

Chromatic number of associahedron ★★

Author(s): Fabila-Monroy; Flores-Penaloza; Huemer; Hurtado; Urrutia; Wood

Conjecture   Associahedra have unbounded chromatic number.

Keywords: associahedron, graph colouring, chromatic number

P vs. NP ★★★★

Author(s): Cook; Levin

Problem   Is P = NP?

Keywords: Complexity Class; Computational Complexity; Millenium Problems; NP; P; polynomial algorithm

War Thunder Unlimited Golden Eagles Cheats Generator 2024 (fresh strategy) ★★

Author(s):

War Thunder Unlimited Golden Eagles Cheats Generator 2024 (fresh strategy)

Keywords:

Hungry Shark Evolution Cheats Generator 2024 Working (Generator) ★★

Author(s):

Hungry Shark Evolution Cheats Generator 2024 Working (Generator)

Keywords:

Infinite distributivity of meet over join for a principal funcoid ★★

Author(s): Porton

Conjecture   $ f \sqcap \bigsqcup S = \bigsqcup \langle f \sqcap \rangle^{\ast} S $ for principal funcoid $ f $ and a set $ S $ of funcoids of appropriate sources and destinations.

Keywords: distributivity; principal funcoid

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method) ★★

Author(s):

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method)

Keywords:

Lords Mobile Latest Cheats Version 2024 Free Gems Coins (WORKING GENERATOR) ★★

Author(s):

Lords Mobile Latest Cheats Version 2024 Free Gems Coins (WORKING GENERATOR)

Keywords:

The Bermond-Thomassen Conjecture ★★

Author(s): Bermond; Thomassen

Conjecture   For every positive integer $ k $, every digraph with minimum out-degree at least $ 2k-1 $ contains $ k $ disjoint cycles.

Keywords: cycles

Dense rational distance sets in the plane ★★★

Author(s): Ulam

Problem   Does there exist a dense set $ S \subseteq {\mathbb R}^2 $ so that all pairwise distances between points in $ S $ are rational?

Keywords: integral distance; rational distance

Burnside problem ★★★★

Author(s): Burnside

Conjecture   If a group has $ r $ generators and exponent $ n $, is it necessarily finite?

Keywords:

57-regular Moore graph? ★★★

Author(s): Hoffman; Singleton

Question   Does there exist a 57-regular graph with diameter 2 and girth 5?

Keywords: cage; Moore graph

eFootball 2023 Cheats Generator IOS Android No Verification 2024 (NEW STRATEGY) ★★

Author(s):

eFootball 2023 Cheats Generator IOS Android No Verification 2024 (NEW STRATEGY)

Keywords:

Jaeger's modular orientation conjecture ★★★

Author(s): Jaeger

Conjecture   Every $ 4k $-edge-connected graph can be oriented so that $ {\mathit indegree}(v) - {\mathit outdegree}(v) \cong 0 $ (mod $ 2k+1 $) for every vertex $ v $.

Keywords: nowhere-zero flow; orientation

Strict inequalities for products of filters

Author(s): Porton

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} \subset \mathcal{A}   \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $. Particularly, is this formula true for $ \mathcal{A} = \mathcal{B} = \Delta \cap \uparrow^{\mathbb{R}} \left( 0 ; +   \infty \right) $?

A weaker conjecture:

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $.

Keywords: filter products

Covering powers of cycles with equivalence subgraphs

Author(s):

Conjecture   Given $ k $ and $ n $, the graph $ C_{n}^k $ has equivalence covering number $ \Omega(k) $.

Keywords:

V-Bucks Generator Unlimited IOS Android No Survey 2024 (FREE METHOD) ★★

Author(s):

V-Bucks Generator Unlimited IOS Android No Survey 2024 (FREE METHOD)

Keywords:

A gold-grabbing game ★★

Author(s): Rosenfeld

Setup Fix a tree $ T $ and for every vertex $ v \in V(T) $ a non-negative integer $ g(v) $ which we think of as the amount of gold at $ v $.

2-Player game Players alternate turns. On each turn, a player chooses a leaf vertex $ v $ of the tree, takes the gold at this vertex, and then deletes $ v $. The game ends when the tree is empty, and the winner is the player who has accumulated the most gold.

Problem   Find optimal strategies for the players.

Keywords: game; tree

Point sets with no empty pentagon

Author(s): Wood

Problem   Classify the point sets with no empty pentagon.

Keywords: combinatorial geometry; visibility graph

Decomposing an eulerian graph into cycles. ★★

Author(s): Hajós

Conjecture   Every simple eulerian graph on $ n $ vertices can be decomposed into at most $ \frac{1}{2}(n-1) $ cycles.

Keywords:

Decomposing an eulerian graph into cycles with no two consecutives edges on a prescribed eulerian tour. ★★

Author(s): Sabidussi

Conjecture   Let $ G $ be an eulerian graph of minimum degree $ 4 $, and let $ W $ be an eulerian tour of $ G $. Then $ G $ admits a decomposition into cycles none of which contains two consecutive edges of $ W $.

Keywords:

War Thunder Unlimited Generator Golden Eagles Cheats IOS And Android No Survey 2024 (free!!) ★★

Author(s):

War Thunder Unlimited Generator Golden Eagles Cheats IOS And Android No Survey 2024 (free!!)

Keywords:

Fasted Way! For Free Golf Battle Cheats Generator Working 2024 Android Ios ★★

Author(s):

Fasted Way! For Free Golf Battle Cheats Generator Working 2024 Android Ios

Keywords:

Characterizing (aleph_0,aleph_1)-graphs ★★★

Author(s): Diestel; Leader

Call a graph an $ (\aleph_0,\aleph_1) $-graph if it has a bipartition $ (A,B) $ so that every vertex in $ A $ has degree $ \aleph_0 $ and every vertex in $ B $ has degree $ \aleph_1 $.

Problem   Characterize the $ (\aleph_0,\aleph_1) $-graphs.

Keywords: binary tree; infinite graph; normal spanning tree; set theory

War Machines Coins Diamonds Cheats 2024 (iOS Android) ★★

Author(s):

Conjecture  

Keywords:

"New Cheats" Subway Surfers Coins Keys Cheats Free 2024 ★★

Author(s):

"New Cheats" Subway Surfers Coins Keys Cheats Free 2024

Keywords:

Hedetniemi's Conjecture ★★★

Author(s): Hedetniemi

Conjecture   If $ G,H $ are simple finite graphs, then $ \chi(G \times H) = \min \{ \chi(G), \chi(H) \} $.

Here $ G \times H $ is the tensor product (also called the direct or categorical product) of $ G $ and $ H $.

Keywords: categorical product; coloring; homomorphism; tensor product

Cooking Fever Cheats Generator Unlimited Cheats Generator (No Human Verification) ★★

Author(s):

Cooking Fever Cheats Generator Unlimited Cheats Generator (No Human Verification)

Keywords:

Inscribed Square Problem ★★

Author(s): Toeplitz

Conjecture   Does every Jordan curve have 4 points on it which form the vertices of a square?

Keywords: simple closed curve; square