Random

War Machines Coins Diamonds Cheats 2024 (iOS Android) ★★

Author(s):

Conjecture  

Keywords:

Codes Free Star Stable Star Coins Jorvik Coins Cheats 2024 No Human Veryfication!!! ★★

Author(s):

Codes Free Star Stable Star Coins Jorvik Coins Cheats 2024 No Human Veryfication!!!

Keywords:

3-Decomposition Conjectures ★★

Author(s):

Conjecture  

Keywords:

Real Racing 3 Cheats Generator Tested on iOS and Android (Latest Method) ★★

Author(s):

Real Racing 3 Cheats Generator Tested on iOS and Android (Latest Method)

Keywords:

3-accessibility of Fibonacci numbers ★★

Author(s): Landman; Robertson

Question   Is the set of Fibonacci numbers 3-accessible?

Keywords: Fibonacci numbers; monochromatic diffsequences

Fishing Clash Cheats Generator Free in 2024 (Premium For Free) ★★

Author(s):

Fishing Clash Cheats Generator Free in 2024 (Premium For Free)

Keywords:

Non-edges vs. feedback edge sets in digraphs ★★★

Author(s): Chudnovsky; Seymour; Sullivan

For any simple digraph $ G $, we let $ \gamma(G) $ be the number of unordered pairs of nonadjacent vertices (i.e. the number of non-edges), and $ \beta(G) $ be the size of the smallest feedback edge set.

Conjecture  If $ G $ is a simple digraph without directed cycles of length $ \le 3 $, then $ \beta(G) \le \frac{1}{2} \gamma(G) $.

Keywords: acyclic; digraph; feedback edge set; triangle free

List Colourings of Complete Multipartite Graphs with 2 Big Parts ★★

Author(s): Allagan

Question   Given $ a,b\geq2 $, what is the smallest integer $ t\geq0 $ such that $ \chi_\ell(K_{a,b}+K_t)= \chi(K_{a,b}+K_t) $?

Keywords: complete bipartite graph; complete multipartite graph; list coloring

Sequence defined on multisets ★★

Author(s): Erickson

Conjecture   Define a $ 2 \times n $ array of positive integers where the first row consists of some distinct positive integers arranged in increasing order, and the second row consists of any positive integers in any order. Create a new array where the first row consists of all the integers that occur in the first array, arranged in increasing order, and the second row consists of their multiplicities. Repeat the process. For example, starting with the array $ [1; 1] $, the sequence is: $ [1; 1] $ -> $ [1; 2] $ -> $ [1, 2; 1, 1] $ -> $ [1, 2; 3, 1] $ -> $ [1, 2, 3; 2, 1, 1] $ -> $ [1, 2, 3; 3, 2, 1] $ -> $ [1, 2, 3; 2, 2, 2] $ -> $ [1, 2, 3; 1, 4, 1] $ -> $ [1, 2, 3, 4; 3, 1, 1, 1] $ -> $ [1, 2, 3, 4; 4, 1, 2, 1] $ -> $ [1, 2, 3, 4; 3, 2, 1, 2] $ -> $ [1, 2, 3, 4; 2, 3, 2, 1] $, and we now have a fixed point (loop of one array).

The process always results in a loop of 1, 2, or 3 arrays.

Keywords: multiset; sequence

Cheats Free* Sims FreePlay Simoleons Life Points and Social Points Cheats 2024 No Human Verification ★★

Author(s):

Cheats Free* Sims FreePlay Simoleons Life Points and Social Points Cheats 2024 No Human Verification

Keywords:

The permanent conjecture ★★

Author(s): Kahn

Conjecture   If $ A $ is an invertible $ n \times n $ matrix, then there is an $ n \times n $ submatrix $ B $ of $ [A A] $ so that $ perm(B) $ is nonzero.

Keywords: invertible; matrix; permanent

Every prism over a 3-connected planar graph is hamiltonian. ★★

Author(s): Kaiser; Král; Rosenfeld; Ryjácek; Voss

Conjecture   If $ G $ is a $ 3 $-connected planar graph, then $ G\square K_2 $ has a Hamilton cycle.

Keywords:

Crossing numbers and coloring ★★★

Author(s): Albertson

We let $ cr(G) $ denote the crossing number of a graph $ G $.

Conjecture   Every graph $ G $ with $ \chi(G) \ge t $ satisfies $ cr(G) \ge cr(K_t) $.

Keywords: coloring; complete graph; crossing number

Polignac's Conjecture ★★★

Author(s): de Polignac

Conjecture   Polignac's Conjecture: For any positive even number n, there are infinitely many prime gaps of size n. In other words: There are infinitely many cases of two consecutive prime numbers with difference n.

In particular, this implies:

Conjecture   Twin Prime Conjecture: There are an infinite number of twin primes.

Keywords: prime; prime gap

Combinatorial covering designs

Author(s): Gordon; Mills; Rödl; Schönheim

A $ (v, k, t) $ covering design, or covering, is a family of $ k $-subsets, called blocks, chosen from a $ v $-set, such that each $ t $-subset is contained in at least one of the blocks. The number of blocks is the covering’s size, and the minimum size of such a covering is denoted by $ C(v, k, t) $.

Problem   Find a closed form, recurrence, or better bounds for $ C(v,k,t) $. Find a procedure for constructing minimal coverings.

Keywords: recreational mathematics

The Crossing Number of the Complete Graph ★★★

Author(s):

The crossing number $ cr(G) $ of $ G $ is the minimum number of crossings in all drawings of $ G $ in the plane.

Conjecture   $ \displaystyle cr(K_n) =   \frac 14 \floor{\frac n2} \floor{\frac{n-1}2} \floor{\frac{n-2}2} \floor{\frac{n-3}2} $

Keywords: complete graph; crossing number

Kneser–Poulsen conjecture ★★★

Author(s): Kneser; Poulsen

Conjecture   If a finite set of unit balls in $ \mathbb{R}^n $ is rearranged so that the distance between each pair of centers does not decrease, then the volume of the union of the balls does not decrease.

Keywords: pushing disks

Apex Legends Coins Cheats 2024 (rejuvenated cheats) ★★

Author(s):

Apex Legends Coins Cheats 2024 (rejuvenated cheats)

Keywords:

Characterizing (aleph_0,aleph_1)-graphs ★★★

Author(s): Diestel; Leader

Call a graph an $ (\aleph_0,\aleph_1) $-graph if it has a bipartition $ (A,B) $ so that every vertex in $ A $ has degree $ \aleph_0 $ and every vertex in $ B $ has degree $ \aleph_1 $.

Problem   Characterize the $ (\aleph_0,\aleph_1) $-graphs.

Keywords: binary tree; infinite graph; normal spanning tree; set theory

Graham's conjecture on tree reconstruction ★★

Author(s): Graham

Problem   for every graph $ G $, we let $ L(G) $ denote the line graph of $ G $. Given that $ G $ is a tree, can we determine it from the integer sequence $ |V(G)|, |V(L(G))|, |V(L(L(G)))|, \ldots $?

Keywords: reconstruction; tree

Hamiltonian cycles in powers of infinite graphs ★★

Author(s): Georgakopoulos

Conjecture  
    \item If $ G $ is a countable connected graph then its third power is hamiltonian. \item If $ G $ is a 2-connected countable graph then its square is hamiltonian.

Keywords: hamiltonian; infinite graph

V-Bucks Generator Free 2024 in 5 minutes (New Generator V-Bucks) ★★

Author(s):

V-Bucks Generator Free 2024 in 5 minutes (New Generator V-Bucks)

Keywords:

Rainbow Six Siege Cheats Generator Unlimited R6 No Jailbreak (Premium Orginal Generator) ★★

Author(s):

Rainbow Six Siege Cheats Generator Unlimited R6 No Jailbreak (Premium Orginal Generator)

Keywords:

4-flow conjecture ★★★

Author(s): Tutte

Conjecture   Every bridgeless graph with no Petersen minor has a nowhere-zero 4-flow.

Keywords: minor; nowhere-zero flow; Petersen graph

Chromatic number of associahedron ★★

Author(s): Fabila-Monroy; Flores-Penaloza; Huemer; Hurtado; Urrutia; Wood

Conjecture   Associahedra have unbounded chromatic number.

Keywords: associahedron, graph colouring, chromatic number

Mastering Subway Surfers: Your Ultimate Guide to Cheats, Hacks, and Generators ★★

Author(s):

Conjecture  

Keywords:

Generalised Empty Hexagon Conjecture ★★

Author(s): Wood

Conjecture   For each $ \ell\geq3 $ there is an integer $ f(\ell) $ such that every set of at least $ f(\ell) $ points in the plane contains $ \ell $ collinear points or an empty hexagon.

Keywords: empty hexagon

Every 4-connected toroidal graph has a Hamilton cycle ★★

Author(s): Grunbaum; Nash-Williams

Conjecture   Every 4-connected toroidal graph has a Hamilton cycle.

Keywords:

Simultaneous partition of hypergraphs ★★

Author(s): Kühn; Osthus

Problem   Let $ H_1 $ and $ H_2 $ be two $ r $-uniform hypergraph on the same vertex set $ V $. Does there always exist a partition of $ V $ into $ r $ classes $ V_1, \dots , V_r $ such that for both $ i=1,2 $, at least $ r!m_i/r^r -o(m_i) $ hyperedges of $ H_i $ meet each of the classes $ V_1, \dots , V_r $?

Keywords:

Fishdom Cheats Generator 2023-2024 Edition Hack (NEW-FREE!!) ★★

Author(s):

Fishdom Cheats Generator 2023-2024 Edition Hack (NEW-FREE!!)

Keywords:

Invariant subspace problem ★★★

Author(s):

Problem   Does every bounded linear operator on an infinite-dimensional separable Hilbert space have a non-trivial closed invariant subspace?

Keywords: subspace

Closing Lemma for Diffeomorphism (Dynamical Systems) ★★★★

Author(s): Charles Pugh

Conjecture   Let $ f\in Diff^{r}(M) $ and $ p\in\omega_{f}  $. Then for any neighborhood $ V_{f}\subset Diff^{r}(M)  $ there is $ g\in V_{f} $ such that $ p $ is periodic point of $ g $

There is an analogous conjecture for flows ( $ C^{r} $ vector fields . In the case of diffeos this was proved by Charles Pugh for $ r = 1 $. In the case of Flows this has been solved by Sushei Hayahshy for $ r = 1 $ . But in the two cases the problem is wide open for $ r > 1 $

Keywords: Dynamics , Pertubation

Hamiltonian paths and cycles in vertex transitive graphs ★★★

Author(s): Lovasz

Problem   Does every connected vertex-transitive graph have a Hamiltonian path?

Keywords: cycle; hamiltonian; path; vertex-transitive

Snevily's conjecture ★★★

Author(s): Snevily

Conjecture   Let $ G $ be an abelian group of odd order and let $ A,B \subseteq G $ satisfy $ |A| = |B| = k $. Then the elements of $ A $ and $ B $ may be ordered $ A = \{a_1,\ldots,a_k\} $ and $ B = \{b_1,\ldots,b_k\} $ so that the sums $ a_1+b_1, a_2+b_2 \ldots, a_k + b_k $ are pairwise distinct.

Keywords: addition table; latin square; transversal

Dividing up the unrestricted partitions ★★

Author(s): David S.; Newman

Begin with the generating function for unrestricted partitions:

(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...

Now change some of the plus signs to minus signs. The resulting series will have coefficients congruent, mod 2, to the coefficients of the generating series for unrestricted partitions. I conjecture that the signs may be chosen such that all the coefficients of the series are either 1, -1, or zero.

Keywords: congruence properties; partition

eFootball 2023 Cheats Generator 2024 (WORKING IN 5 SECOND) ★★

Author(s):

eFootball 2023 Cheats Generator 2024 (WORKING IN 5 SECOND)

Keywords:

Switching reconstruction conjecture ★★

Author(s): Stanley

Conjecture   Every simple graph on five or more vertices is switching-reconstructible.

Keywords: reconstruction

Toon Blast Cheats Generator 2024 Cheats Generator Tested On Android Ios (extra) ★★

Author(s):

Toon Blast Cheats Generator 2024 Cheats Generator Tested On Android Ios (extra)

Keywords:

Cyclic spanning subdigraph with small cyclomatic number ★★

Author(s): Bondy

Conjecture   Let $ D $ be a digraph all of whose strong components are nontrivial. Then $ D $ contains a cyclic spanning subdigraph with cyclomatic number at most $ \alpha(D) $.

Keywords:

Ding's tau_r vs. tau conjecture ★★★

Author(s): Ding

Conjecture   Let $ r \ge 2 $ be an integer and let $ H $ be a minor minimal clutter with $ \frac{1}{r}\tau_r(H) < \tau(H) $. Then either $ H $ has a $ J_k $ minor for some $ k \ge 2 $ or $ H $ has Lehman's property.

Keywords: clutter; covering; MFMC property; packing

REAL* Free!! Match Masters Coins Cheats Trick 2024 ★★

Author(s):

REAL* Free!! Match Masters Coins Cheats Trick 2024

Keywords:

Free Royal Match Free Coins Cheats 2024 (Safe) ★★

Author(s):

Free Royal Match Free Coins Cheats 2024 (Safe)

Keywords:

Approximation ratio for k-outerplanar graphs ★★

Author(s): Bentz

Conjecture   Is the approximation ratio for the Maximum Edge Disjoint Paths (MaxEDP) or the Maximum Integer Multiflow problem (MaxIMF) bounded by a constant in $ k $-outerplanar graphs or tree-width graphs?

Keywords: approximation algorithms; planar graph; polynomial algorithm

REAL* Free!! Call Of Duty Mobile Cheats Generator (Trick 2024) ★★

Author(s):

REAL* Free!! Call Of Duty Mobile Cheats Generator (Trick 2024)

Keywords:

Direct proof of a theorem about compact funcoids ★★

Author(s): Porton

Conjecture   Let $ f $ is a $ T_1 $-separable (the same as $ T_2 $ for symmetric transitive) compact funcoid and $ g $ is a uniform space (reflexive, symmetric, and transitive endoreloid) such that $ ( \mathsf{\tmop{FCD}}) g = f $. Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.

The direct proof may be constructed by correcting all errors an omissions in this draft article.

Direct proof could be better because with it we would get a little more general statement like this:

Conjecture   Let $ f $ be a $ T_1 $-separable compact reflexive symmetric funcoid and $ g $ be a reloid such that
    \item $ ( \mathsf{\tmop{FCD}}) g = f $; \item $ g \circ g^{- 1} \sqsubseteq g $.

Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

Keywords: compact space; compact topology; funcoid; reloid; uniform space; uniformity

Candy Crush Saga Golds Lives Cheats 2024 Update Cheat (Verified) ★★

Author(s):

Candy Crush Saga Golds Lives Cheats 2024 Update Cheat (Verified)

Keywords:

Open problem ★★

Author(s):

Open problem

Keywords:

A conjecture on iterated circumcentres ★★

Author(s): Goddyn

Conjecture   Let $ p_1,p_2,p_3,\ldots $ be a sequence of points in $ {\mathbb R}^d $ with the property that for every $ i \ge d+2 $, the points $ p_{i-1}, p_{i-2}, \ldots p_{i-d-1} $ are distinct, lie on a unique sphere, and further, $ p_i $ is the center of this sphere. If this sequence is periodic, must its period be $ 2d+4 $?

Keywords: periodic; plane geometry; sequence

Edge-Unfolding Convex Polyhedra ★★

Author(s): Shephard

Conjecture   Every convex polyhedron has a (nonoverlapping) edge unfolding.

Keywords: folding; nets

Turán Problem for $10$-Cycles in the Hypercube ★★

Author(s): Erdos

Problem   Bound the extremal number of $ C_{10} $ in the hypercube.

Keywords: cycles; extremal combinatorics; hypercube