Question What is the Waring rank of the determinant of a generic matrix?
For simplicity say we work over the complex numbers. The generic matrix is the matrix with entries for . Its determinant is a homogeneous form of degree , in variables. If is a homogeneous form of degree , a power sum expression for is an expression of the form , the (homogeneous) linear forms. The Waring rank of is the least number of terms in any power sum expression for . For example, the expression means that has Waring rank (it can't be less than , as ).
The generic determinant (or ) has Waring rank . The Waring rank of the generic determinant is at least and no more than , see for instance Lower bound for ranks of invariant forms, Example 4.1. The Waring rank of the permanent is also of interest. The comparison between the determinant and permanent is potentially relevant to Valiant's "VP versus VNP" problem.
Begin with the generating function for unrestricted partitions:
(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...
Now change some of the plus signs to minus signs. The resulting series will have coefficients congruent, mod 2, to the coefficients of the generating series for unrestricted partitions. I conjecture that the signs may be chosen such that all the coefficients of the series are either 1, -1, or zero.
The zeroes of the Riemann zeta function that are inside the Critical Strip (i.e. the vertical strip of the complex plane where the real part of the complex variable is in ]0;1[), are actually located on the Critical line ( the vertical line of the complex plane with real part equal to 1/2)
Conjecture Let be a Cantor set embedded in . Is there a self-homeomorphism of for every greater than so that moves every point by less than and does not intersect ? Such an embedded Cantor set for which no such exists (for some ) is called "sticky". For what dimensions do sticky Cantor sets exist?
Conjecture For all positive integers and , there exists an integer such that every graph of average degree at least contains a subgraph of average degree at least and girth greater than .
Conjecture Let be an integer. For every integer , there exists an integer such that for every digraph , either has a pairwise-disjoint directed cycles of length at least , or there exists a set of at most vertices such that has no directed cycles of length at least .