For a finite (additive) abelian group , the Davenport constant of , denoted , is the smallest integer so that every sequence of elements of with length has a nontrivial subsequence which sums to zero.
To divide a given 2D convex region C into a specified number n of convex pieces all of equal area (perimeters could be different) such that the total perimeter of pieces is (1) maximized (2) minimized.
Remark: It appears maximizing the total perimeter is the easier problem.
The crossing number of is the minimum number of crossings in all drawings of in the plane.
The -dimensional (hyper)cube is the graph whose vertices are all binary sequences of length , and two of the sequences are adjacent in if they differ in precisely one coordinate.
We are given a complete simple undirected weighted graph and its first arbitrary shortest spanning tree . We define the next graph and find on the second arbitrary shortest spanning tree . We continue similarly by finding on , etc. Let k be the smallest number of disjoint shortest spanning trees as defined above and let be the graph obtained as union of all disjoint trees.
Question 1. What is the smallest number of disjoint spanning trees creates a graph containing a Hamiltonian path.
Question 2. What is the smallest number of disjoint spanning trees creates a graph containing a shortest Hamiltonian path?
Questions 3 and 4. Replace in questions 1 and 2 a shortest spanning tree by a 1-tree. What is the smallest number of disjoint 1-trees creates a Hamiltonian graph? What is the smallest number of disjoint 1-trees creates a graph containing a shortest Hamiltonian cycle?
Given integers , let be the smallest integer such that the symmetric group on the set of all words of length over a -letter alphabet can be generated as ( times), where is the shuffle permutation defined by , and is the exchange group consisting of all permutations in preserving the first letters in the words.
Problem Two players start at a distance of 2 on an (undirected) line (so, neither player knows the direction of the other) and both move at a maximum speed of 1. What is the infimum expected meeting time (first time when the players occupy the same point) which can be achieved assuming the two players must adopt the same strategy?
Problem Find a constant such that for any there is a sequence of tautologies of depth that have polynomial (or quasi-polynomial) size proofs in depth Frege system but requires exponential size proofs.