Random

Highly connected graphs with no K_n minor ★★★

Author(s): Thomas

Problem   Is it true for all $ n \ge 0 $, that every sufficiently large $ n $-connected graph without a $ K_n $ minor has a set of $ n-5 $ vertices whose deletion results in a planar graph?

Keywords: connectivity; minor

Dragon City Cheats Generator 2024 Update Hacks (Verified) ★★

Author(s):

Dragon City Cheats Generator 2024 Update Hacks (Verified)

Keywords:

Cooking Fever Cheats Generator Free 2024 in 5 minutes (New Cheats Generator Cooking Fever) ★★

Author(s):

Cooking Fever Cheats Generator Free 2024 in 5 minutes (New Cheats Generator Cooking Fever)

Keywords:

Bingo Blitz Cheats Generator Unlimited No Jailbreak (Premium) ★★

Author(s):

Bingo Blitz Cheats Generator Unlimited No Jailbreak (Premium)

Keywords:

8 Ball Pool Free Cash Cheats Link 2024 (that work) ★★

Author(s):

8 Ball Pool Free Cash Cheats Link 2024 (that work)

Keywords:

Are almost all graphs determined by their spectrum? ★★★

Author(s):

Problem   Are almost all graphs uniquely determined by the spectrum of their adjacency matrix?

Keywords: cospectral; graph invariant; spectrum

Diophantine quintuple conjecture ★★

Author(s):

Definition   A set of m positive integers $ \{a_1, a_2, \dots, a_m\} $ is called a Diophantine $ m $-tuple if $ a_i\cdot a_j + 1 $ is a perfect square for all $ 1 \leq i < j \leq m $.
Conjecture  (1)   Diophantine quintuple does not exist.

It would follow from the following stronger conjecture [Da]:

Conjecture  (2)   If $ \{a, b, c, d\} $ is a Diophantine quadruple and $ d > \max \{a, b, c\} $, then $ d = a + b + c + 2bc + 2\sqrt{(ab+1)(ac+1)(bc+1)}. $

Keywords:

Birch & Swinnerton-Dyer conjecture ★★★★

Author(s):

Conjecture   Let $ E/K $ be an elliptic curve over a number field $ K $. Then the order of the zeros of its $ L $-function, $ L(E, s) $, at $ s = 1 $ is the Mordell-Weil rank of $ E(K) $.

Keywords:

Open problem ★★

Author(s):

Open problem

Keywords:

Earth-Moon Problem ★★

Author(s): Ringel

Problem   What is the maximum number of colours needed to colour countries such that no two countries sharing a common border have the same colour in the case where each country consists of one region on earth and one region on the moon ?

Keywords:

SimCity BuildIt Cheats Generator Free 2024 No Human Verification (New Update) ★★

Author(s):

SimCity BuildIt Cheats Generator Free 2024 No Human Verification (New Update)

Keywords:

The Erdös-Hajnal Conjecture ★★★

Author(s): Erdos; Hajnal

Conjecture   For every fixed graph $ H $, there exists a constant $ \delta(H) $, so that every graph $ G $ without an induced subgraph isomorphic to $ H $ contains either a clique or an independent set of size $ |V(G)|^{\delta(H)} $.

Keywords: induced subgraph

Odd-cycle transversal in triangle-free graphs ★★

Author(s): Erdos; Faudree; Pach; Spencer

Conjecture   If $ G $ is a simple triangle-free graph, then there is a set of at most $ n^2/25 $ edges whose deletion destroys every odd cycle.

Keywords:

Triangle free strongly regular graphs ★★★

Author(s):

Problem   Is there an eighth triangle free strongly regular graph?

Keywords: strongly regular; triangle free

Funcoidal products inside an inward reloid ★★

Author(s): Porton

Conjecture   (solved) If $ a \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} b \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f $ then $ a \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} b \subseteq f $ for every funcoid $ f $ and atomic f.o. $ a $ and $ b $ on the source and destination of $ f $ correspondingly.

A stronger conjecture:

Conjecture   If $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} \subseteq \left( \mathsf{\ensuremath{\operatorname{RLD}}} \right)_{\ensuremath{\operatorname{in}}} f $ then $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{FCD}}}} \mathcal{B} \subseteq f $ for every funcoid $ f $ and $ \mathcal{A} \in \mathfrak{F} \left( \ensuremath{\operatorname{Src}}f \right) $, $ \mathcal{B} \in \mathfrak{F} \left( \ensuremath{\operatorname{Dst}}f \right) $.

Keywords: inward reloid

Hungry Shark World Cheats Generator 2024 (Legal) ★★

Author(s):

Hungry Shark World Cheats Generator 2024 (Legal)

Keywords:

Sequence defined on multisets ★★

Author(s): Erickson

Conjecture   Define a $ 2 \times n $ array of positive integers where the first row consists of some distinct positive integers arranged in increasing order, and the second row consists of any positive integers in any order. Create a new array where the first row consists of all the integers that occur in the first array, arranged in increasing order, and the second row consists of their multiplicities. Repeat the process. For example, starting with the array $ [1; 1] $, the sequence is: $ [1; 1] $ -> $ [1; 2] $ -> $ [1, 2; 1, 1] $ -> $ [1, 2; 3, 1] $ -> $ [1, 2, 3; 2, 1, 1] $ -> $ [1, 2, 3; 3, 2, 1] $ -> $ [1, 2, 3; 2, 2, 2] $ -> $ [1, 2, 3; 1, 4, 1] $ -> $ [1, 2, 3, 4; 3, 1, 1, 1] $ -> $ [1, 2, 3, 4; 4, 1, 2, 1] $ -> $ [1, 2, 3, 4; 3, 2, 1, 2] $ -> $ [1, 2, 3, 4; 2, 3, 2, 1] $, and we now have a fixed point (loop of one array).

The process always results in a loop of 1, 2, or 3 arrays.

Keywords: multiset; sequence

Stable set meeting all longest directed paths. ★★

Author(s): Laborde; Payan; Xuong N.H.

Conjecture   Every digraph has a stable set meeting all longest directed paths

Keywords:

Jurassic Park Builder Cheats Generator No Human Verification No Survey (Method 2024) ★★

Author(s):

Jurassic Park Builder Cheats Generator No Human Verification No Survey (Method 2024)

Keywords:

Asymptotic Distribution of Form of Polyhedra ★★

Author(s): Rüdinger

Problem   Consider the set of all topologically inequivalent polyhedra with $ k $ edges. Define a form parameter for a polyhedron as $ \beta:= v/(k+2) $ where $ v $ is the number of vertices. What is the distribution of $ \beta $ for $ k \to \infty $?

Keywords: polyhedral graphs, distribution

Hamilton decomposition of prisms over 3-connected cubic planar graphs ★★

Author(s): Alspach; Rosenfeld

Conjecture   Every prism over a $ 3 $-connected cubic planar graph can be decomposed into two Hamilton cycles.

Keywords:

World Of Tanks Blitz Gold Credits Cheats 2024 (re-designed) ★★

Author(s):

World Of Tanks Blitz Gold Credits Cheats 2024 (re-designed)

Keywords:

Roller Coaster permutations ★★★

Author(s): Ahmed; Snevily

Let $ S_n $ denote the set of all permutations of $ [n]=\set{1,2,\ldots,n} $. Let $ i(\pi) $ and $ d(\pi) $ denote respectively the number of increasing and the number of decreasing sequences of contiguous numbers in $ \pi $. Let $ X(\pi) $ denote the set of subsequences of $ \pi $ with length at least three. Let $ t(\pi) $ denote $ \sum_{\tau\in X(\pi)}(i(\tau)+d(\tau)) $.

A permutation $ \pi\in S_n $ is called a Roller Coaster permutation if $ t(\pi)=\max_{\tau\in S_n}t(\tau) $. Let $ RC(n) $ be the set of all Roller Coaster permutations in $ S_n $.

Conjecture   For $ n\geq 3 $,
    \item If $ n=2k $, then $ |RC(n)|=4 $. \item If $ n=2k+1 $, then $ |RC(n)|=2^j $ with $ j\leq k+1 $.
Conjecture  (Odd Sum conjecture)   Given $ \pi\in RC(n) $,
    \item If $ n=2k+1 $, then $ \pi_j+\pi_{n-j+1} $ is odd for $ 1\leq j\leq k $. \item If $ n=2k $, then $ \pi_j + \pi_{n-j+1} = 2k+1 $ for all $ 1\leq j\leq k $.

Keywords:

Dice Dreams Cheats Generator Get Free Dice Dreams Cheats Generator 2024 (Brand New) ★★

Author(s):

Dice Dreams Cheats Generator Get Free Dice Dreams Cheats Generator 2024 (Brand New)

Keywords:

Cooking Fever Cheats Generator Latest Version 2024 For Free (WORKING Generator) ★★

Author(s):

Cooking Fever Cheats Generator Latest Version 2024 For Free (WORKING Generator)

Keywords:

Bleach Brave Souls Cheats Generator Free 2024 No Human Verification (New Update) ★★

Author(s):

Bleach Brave Souls Cheats Generator Free 2024 No Human Verification (New Update)

Keywords:

Nearly spanning regular subgraphs ★★★

Author(s): Alon; Mubayi

Conjecture   For every $ \epsilon > 0 $ and every positive integer $ k $, there exists $ r_0 = r_0(\epsilon,k) $ so that every simple $ r $-regular graph $ G $ with $ r \ge r_0 $ has a $ k $-regular subgraph $ H $ with $ |V(H)| \ge (1- \epsilon) |V(G)| $.

Keywords: regular; subgraph

War Machines Coins Diamonds Cheats 2024 for Android iOS (updated New Cheats) ★★

Author(s):

Conjecture  

Keywords:

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (Reedem Today) ★★

Author(s):

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (Reedem Today)

Keywords:

Atomicity of the poset of multifuncoids ★★

Author(s): Porton

Conjecture   The poset of multifuncoids of the form $ (\mathscr{P}\mho)^n $ is for every sets $ \mho $ and $ n $:
    \item atomic; \item atomistic.

See below for definition of all concepts and symbols used to in this conjecture.

Refer to this Web site for the theory which I now attempt to generalize.

Keywords: multifuncoid

Transversal achievement game on a square grid ★★

Author(s): Erickson

Problem   Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an $ n \times  n $ grid. The first player (if any) to occupy a set of $ n $ cells having no two cells in the same row or column is the winner. What is the outcome of the game given optimal play?

Keywords: game

World Of Tanks Blitz Gold Credits Cheats Generator 2024 (improved version) ★★

Author(s):

World Of Tanks Blitz Gold Credits Cheats Generator 2024 (improved version)

Keywords:

Hamiltonicity of Cayley graphs ★★★

Author(s): Rapaport-Strasser

Question   Is every Cayley graph Hamiltonian?

Keywords:

Antichains in the cycle continuous order ★★

Author(s): DeVos

If $ G $,$ H $ are graphs, a function $ f : E(G) \rightarrow E(H) $ is called cycle-continuous if the pre-image of every element of the (binary) cycle space of $ H $ is a member of the cycle space of $ G $.

Problem   Does there exist an infinite set of graphs $ \{G_1,G_2,\ldots \} $ so that there is no cycle continuous mapping between $ G_i $ and $ G_j $ whenever $ i \neq j $ ?

Keywords: antichain; cycle; poset

Friendly partitions ★★

Author(s): DeVos

A friendly partition of a graph is a partition of the vertices into two sets so that every vertex has at least as many neighbours in its own class as in the other.

Problem   Is it true that for every $ r $, all but finitely many $ r $-regular graphs have friendly partitions?

Keywords: edge-cut; partition; regular

Hungry Shark Evolution Cheats Generator IOS Android No Survey 2024 (Generator!) ★★

Author(s):

Hungry Shark Evolution Cheats Generator IOS Android No Survey 2024 (Generator!)

Keywords:

Finding k-edge-outerplanar graph embeddings ★★

Author(s): Bentz

Conjecture   It has been shown that a $ k $-outerplanar embedding for which $ k $ is minimal can be found in polynomial time. Does a similar result hold for $ k $-edge-outerplanar graphs?

Keywords: planar graph; polynomial algorithm

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (FREE METHOD) ★★

Author(s):

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (FREE METHOD)

Keywords:

Dice Dreams Cheats Generator iOS Android (WORKING Generator) ★★

Author(s):

Dice Dreams Cheats Generator iOS Android (WORKING Generator)

Keywords:

Upgrading a completary multifuncoid ★★

Author(s): Porton

Let $ \mho $ be a set, $ \mathfrak{F} $ be the set of filters on $ \mho $ ordered reverse to set-theoretic inclusion, $ \mathfrak{P} $ be the set of principal filters on $ \mho $, let $ n $ be an index set. Consider the filtrator $ \left( \mathfrak{F}^n ; \mathfrak{P}^n \right) $.

Conjecture   If $ f $ is a completary multifuncoid of the form $ \mathfrak{P}^n $, then $ E^{\ast} f $ is a completary multifuncoid of the form $ \mathfrak{F}^n $.

See below for definition of all concepts and symbols used to in this conjecture.

Refer to this Web site for the theory which I now attempt to generalize.

Keywords:

Universal highly arc transitive digraphs ★★★

Author(s): Cameron; Praeger; Wormald

An alternating walk in a digraph is a walk $ v_0,e_1,v_1,\ldots,v_m $ so that the vertex $ v_i $ is either the head of both $ e_i $ and $ e_{i+1} $ or the tail of both $ e_i $ and $ e_{i+1} $ for every $ 1 \le i \le m-1 $. A digraph is universal if for every pair of edges $ e,f $, there is an alternating walk containing both $ e $ and $ f $

Question   Does there exist a locally finite highly arc transitive digraph which is universal?

Keywords: arc transitive; digraph

Free Warframe Cheats Platinum Generator 2024 (Legal) ★★

Author(s):

Free Warframe Cheats Platinum Generator 2024 (Legal)

Keywords:

Subgraph of large average degree and large girth. ★★

Author(s): Thomassen

Conjecture   For all positive integers $ g $ and $ k $, there exists an integer $ d $ such that every graph of average degree at least $ d $ contains a subgraph of average degree at least $ k $ and girth greater than $ g $.

Keywords:

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator (New 2024) ★★

Author(s):

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator (New 2024)

Keywords:

List chromatic number and maximum degree of bipartite graphs ★★

Author(s): Alon

Conjecture   There is a constant $ c $ such that the list chromatic number of any bipartite graph $ G $ of maximum degree $ \Delta $ is at most $ c \log \Delta $.

Keywords:

Odd perfect numbers ★★★

Author(s): Ancient/folklore

Conjecture   There is no odd perfect number.

Keywords: perfect number

Erdös-Szekeres conjecture ★★★

Author(s): Erdos; Szekeres

Conjecture   Every set of $ 2^{n-2} + 1 $ points in the plane in general position contains a subset of $ n $ points which form a convex $ n $-gon.

Keywords: combinatorial geometry; Convex Polygons; ramsey theory

A sextic counterexample to Euler's sum of powers conjecture ★★

Author(s): Euler

Problem   Find six positive integers $ x_1, x_2, \dots, x_6 $ such that $$x_1^6 + x_2^6 + x_3^6 + x_4^6 + x_5^6 = x_6^6$$ or prove that such integers do not exist.

Keywords:

War Dragons Rubies Cheats Generator 2024 (improved version) ★★

Author(s):

War Dragons Rubies Cheats Generator 2024 (improved version)

Keywords:

Legal SimCity BuildIt Cheats Generator No Human Verification 2024 (No Surveys Needed) ★★

Author(s):

Legal SimCity BuildIt Cheats Generator No Human Verification 2024 (No Surveys Needed)

Keywords: