Conjecture For every graph without a bridge, there is a flow .
Conjecture There exists a map so that antipodal points of receive opposite values, and so that any three points which are equidistant on a great circle have values which sum to zero.
Conjecture If is a cubic graph not containing a triangle, then it is possible to color the edges of by five colors, so that the complement of every color class is a bipartite graph.
Conjecture For , let be the statement that given any exact -coloring of the edges of a complete countably infinite graph (that is, a coloring with colors all of which must be used at least once), there exists an exactly -colored countably infinite complete subgraph. Then is true if and only if , , or .
Problem Find a constant such that for any there is a sequence of tautologies of depth that have polynomial (or quasi-polynomial) size proofs in depth Frege system but requires exponential size proofs.
Conjecture There is an integer-valued function such that if is any -connected graph and and are any two vertices of , then there exists an induced path with ends and such that is -connected.
Conjecture \item If is a countable connected graph then its third power is hamiltonian. \item If is a 2-connected countable graph then its square is hamiltonian.
Basic Question: Given any positive integer n, can any convex polygon be partitioned into n convex pieces so that all pieces have the same area and same perimeter?
Definitions: Define a Fair Partition of a polygon as a partition of it into a finite number of pieces so that every piece has both the same area and the same perimeter. Further, if all the resulting pieces are convex, call it a Convex Fair Partition.
Questions: 1. (Rephrasing the above 'basic' question) Given any positive integer n, can any convex polygon be convex fair partitioned into n pieces?
2. If the answer to the above is "Not always'', how does one decide the possibility of such a partition for a given convex polygon and a given n? And if fair convex partition is allowed by a specific convex polygon for a give n, how does one find the optimal convex fair partition that minimizes the total length of the cut segments?
3. Finally, what could one say about higher dimensional analogs of this question?
Conjecture: The authors tend to believe that the answer to the above 'basic' question is "yes". In other words they guess: Every convex polygon allows a convex fair partition into n pieces for any n
Conjecture Let is a family of multifuncoids such that each is of the form where is an index set for every and is a set for every . Let every for some multifuncoid of the form regarding the filtrator . Let is a graph-composition of (regarding some partition and external set ). Then there exist a multifuncoid of the form such that regarding the filtrator .
Problem Let be a -dimensional smooth submanifold of , diffeomorphic to . By the Jordan-Brouwer separation theorem, separates into the union of two compact connected -manifolds which share as a common boundary. The Schoenflies problem asks, are these -manifolds diffeomorphic to ? ie: is unknotted?
Problem has the homotopy-type of a product space where is the group of diffeomorphisms of the 4-ball which restrict to the identity on the boundary. Determine some (any?) homotopy or homology groups of .
In an edge-colored digraph, we say that a subgraph is rainbow if all its edges have distinct colors, and monochromatic if all its edges have the same color.
Problem Let be a tournament with edges colored from a set of three colors. Is it true that must have either a rainbow directed cycle of length three or a vertex so that every other vertex can be reached from by a monochromatic (directed) path?
Conjecture Is the approximation ratio for the Maximum Edge Disjoint Paths (MaxEDP) or the Maximum Integer Multiflow problem (MaxIMF) bounded by a constant in -outerplanar graphs or tree-width graphs?
Conjecture Let be a graph and be a positive integer. The power of , denoted by , is defined on the vertex set , by connecting any two distinct vertices and with distance at most . In other words, . Also subdivision of , denoted by , is constructed by replacing each edge of with a path of length . Note that for , we have . Now we can define the fractional power of a graph as follows: Let be a graph and . The graph is defined by the power of the subdivision of . In other words . Conjecture. Let be a connected graph with and be a positive integer greater than 1. Then for any positive integer , we have . In [1], it was shown that this conjecture is true in some special cases.