Problem Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an grid. The first player (if any) to occupy four cells at the vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the game given optimal play? Note: Roland Bacher and Shalom Eliahou proved that every 15 x 15 binary matrix contains four equal entries (all 0's or all 1's) at the vertices of a square with horizontal and vertical sides. So the game must result in a winner (the first player) when n=15.
Conjecture Every complete geometric graph with an even number of vertices has a partition of its edge set into plane (i.e. non-crossing) spanning trees.
Conjecture Let is a family of multifuncoids such that each is of the form where is an index set for every and is a set for every . Let every for some multifuncoid of the form regarding the filtrator . Let is a graph-composition of (regarding some partition and external set ). Then there exist a multifuncoid of the form such that regarding the filtrator .
Problem Does the following equality hold for every graph ?
The crossing number of a graph is the minimum number of edge crossings in any drawing of in the plane. In the pairwise crossing number, we minimize the number of pairs of edges that cross.
Let be a graph. If and are two integers, a -colouring of is a function from to such that for each edge . Given a list assignment of , i.e.~a mapping that assigns to every vertex a set of non-negative integers, an -colouring of is a mapping such that for every . A list assignment is a --list-assignment if and for each vertex . Given such a list assignment , the graph G is --colourable if there exists a --colouring , i.e. is both a -colouring and an -colouring. For any real number , the graph is --choosable if it is --colourable for every --list-assignment . Last, is circularly -choosable if it is --choosable for any , . The circular choosability (or circular list chromatic number or circular choice number) of G is
Problem What is the best upper bound on circular choosability for planar graphs?