Problem Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an grid. The first player (if any) to occupy four cells at the vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the game given optimal play? Note: Roland Bacher and Shalom Eliahou proved that every 15 x 15 binary matrix contains four equal entries (all 0's or all 1's) at the vertices of a square with horizontal and vertical sides. So the game must result in a winner (the first player) when n=15.
Question What is the least integer such that every set of at least points in the plane contains collinear points or a subset of points in general position (no three collinear)?
Conjecture Any linear hypergraph with incidence poset of dimension at most 3 is the intersection hypergraph of a family of triangles and segments in the plane.
Problem The valency-variety of a graph is the number of different degrees in . Is the chromatic number of any graph with at least two vertices greater than
Conjecture Can all problems that can be computed by a probabilistic Turing machine (with error probability < 1/3) in polynomial time be solved by a deterministic Turing machine in polynomial time? That is, does P = BPP?
Given integers , the 2-stage Shuffle-Exchange graph/network, denoted , is the simple -regular bipartite graph with the ordered pair of linearly labeled parts and , where , such that vertices and are adjacent if and only if (see Fig.1).
Given integers , the -stage Shuffle-Exchange graph/network, denoted , is the proper (i.e., respecting all the orders) concatenation of identical copies of (see Fig.1).
Let be the smallest integer such that the graph is rearrangeable.
Let be a graph. If and are two integers, a -colouring of is a function from to such that for each edge . Given a list assignment of , i.e.~a mapping that assigns to every vertex a set of non-negative integers, an -colouring of is a mapping such that for every . A list assignment is a --list-assignment if and for each vertex . Given such a list assignment , the graph G is --colourable if there exists a --colouring , i.e. is both a -colouring and an -colouring. For any real number , the graph is --choosable if it is --colourable for every --list-assignment . Last, is circularly -choosable if it is --choosable for any , . The circular choosability (or circular list chromatic number or circular choice number) of G is
Problem What is the best upper bound on circular choosability for planar graphs?
Problem () Find a sufficient condition for a straight -stage graph to be rearrangeable. In particular, what about a straight uniform graph?
Conjecture () Let be a simple regular ordered -stage graph. Suppose that the graph is externally connected, for some . Then the graph is rearrangeable.
Question \item Does hold over graphs of bounded tree-width? \item Is included in over graphs? \item Does have a 0-1 law? \item Are properties of Hanf-local? \item Is there a logic (with an effective syntax) that captures ?