Random

Raid Shadow Legends Cheats Generator Working (refreshed version) ★★

Author(s):

Raid Shadow Legends Cheats Generator Working (refreshed version)

Keywords:

Subdivision of a transitive tournament in digraphs with large outdegree. ★★

Author(s): Mader

Conjecture   For all $ k $ there is an integer $ f(k) $ such that every digraph of minimum outdegree at least $ f(k) $ contains a subdivision of a transitive tournament of order $ k $.

Keywords:

Subgroup formed by elements of order dividing n ★★

Author(s): Frobenius

Conjecture  

Suppose $ G $ is a finite group, and $ n $ is a positive integer dividing $ |G| $. Suppose that $ G $ has exactly $ n $ solutions to $ x^{n} = 1 $. Does it follow that these solutions form a subgroup of $ G $?

Keywords: order, dividing

House Of Fun Cheats Generator Free Cheats Generator 2024 No Verification (Android iOS) ★★

Author(s):

House Of Fun Cheats Generator Free Cheats Generator 2024 No Verification (Android iOS)

Keywords:

Toon Blast Cheats Generator 2024 (rejuvenated Generator) ★★

Author(s):

Toon Blast Cheats Generator 2024 (rejuvenated Generator)

Keywords:

Multicolour Erdős--Hajnal Conjecture ★★★

Author(s): Erdos; Hajnal

Conjecture   For every fixed $ k\geq2 $ and fixed colouring $ \chi $ of $ E(K_k) $ with $ m $ colours, there exists $ \varepsilon>0 $ such that every colouring of the edges of $ K_n $ contains either $ k $ vertices whose edges are coloured according to $ \chi $ or $ n^\varepsilon $ vertices whose edges are coloured with at most $ m-1 $ colours.

Keywords: ramsey theory

Dice Dreams Cheats Generator Free Unlimited Cheats Generator (LATEST) ★★

Author(s):

Dice Dreams Cheats Generator Free Unlimited Cheats Generator (LATEST)

Keywords:

Is there an algorithm to determine if a triangulated 4-manifold is combinatorially equivalent to the 4-sphere? ★★★

Author(s): Novikov

Problem   Is there an algorithm which takes as input a triangulated 4-manifold, and determines whether or not this manifold is combinatorially equivalent to the 4-sphere?

Keywords: 4-sphere; algorithm

Matchings extend to Hamiltonian cycles in hypercubes ★★

Author(s): Ruskey; Savage

Question   Does every matching of hypercube extend to a Hamiltonian cycle?

Keywords: Hamiltonian cycle; hypercube; matching

Oriented trees in n-chromatic digraphs ★★★

Author(s): Burr

Conjecture   Every digraph with chromatic number at least $ 2k-2 $ contains every oriented tree of order $ k $ as a subdigraph.

Keywords:

Monochromatic empty triangles ★★★

Author(s):

If $ X \subseteq {\mathbb R}^2 $ is a finite set of points which is 2-colored, an empty triangle is a set $ T \subseteq X $ with $ |T|=3 $ so that the convex hull of $ T $ is disjoint from $ X \setminus T $. We say that $ T $ is monochromatic if all points in $ T $ are the same color.

Conjecture   There exists a fixed constant $ c $ with the following property. If $ X \subseteq {\mathbb R}^2 $ is a set of $ n $ points in general position which is 2-colored, then it has $ \ge cn^2 $ monochromatic empty triangles.

Keywords: empty triangle; general position; ramsey theory

Earth-Moon Problem ★★

Author(s): Ringel

Problem   What is the maximum number of colours needed to colour countries such that no two countries sharing a common border have the same colour in the case where each country consists of one region on earth and one region on the moon ?

Keywords:

Open problem ★★

Author(s):

Open problem

Keywords:

Sum of prime and semiprime conjecture ★★

Author(s): Geoffrey Marnell

Conjecture   Every even number greater than $ 10 $ can be represented as the sum of an odd prime number and an odd semiprime .

Keywords: prime; semiprime

57-regular Moore graph? ★★★

Author(s): Hoffman; Singleton

Question   Does there exist a 57-regular graph with diameter 2 and girth 5?

Keywords: cage; Moore graph

Shuffle-Exchange Conjecture (graph-theoretic form) ★★★

Author(s): Beneš; Folklore; Stone

Given integers $ k,n \ge 2 $, the 2-stage Shuffle-Exchange graph/network, denoted $ \text{SE}(k,n) $, is the simple $ k $-regular bipartite graph with the ordered pair $ (U,V) $ of linearly labeled parts $ U:=\{u_0,\dots,u_{t-1}\} $ and $ V:=\{v_0,\dots,v_{t-1}\} $, where $ t:=k^{n-1} $, such that vertices $ u_i $ and $ v_j $ are adjacent if and only if $ (j - ki) \text{ mod } t < k $ (see Fig.1).

Given integers $ k,n,r \ge 2 $, the $ r $-stage Shuffle-Exchange graph/network, denoted $ (\text{SE}(k,n))^{r-1} $, is the proper (i.e., respecting all the orders) concatenation of $ r-1 $ identical copies of $ \text{SE}(k,n) $ (see Fig.1).

Let $ r(k,n) $ be the smallest integer $ r\ge 2 $ such that the graph $ (\text{SE}(k,n))^{r-1} $ is rearrangeable.

Problem   Find $ r(k,n) $.
Conjecture   $ r(k,n)=2n-1 $.

Keywords:

Free Super Meat Boy Forever Cheats No Human Verification No Survey (2024 Method) ★★

Author(s):

Free Super Meat Boy Forever Cheats No Human Verification No Survey (2024 Method)

Keywords:

Royal Match Free Coins Cheats 2024 Real Working New Method ★★

Author(s):

Royal Match Free Coins Cheats 2024 Real Working New Method

Keywords:

Dividing up the unrestricted partitions ★★

Author(s): David S.; Newman

Begin with the generating function for unrestricted partitions:

(1+x+x^2+...)(1+x^2+x^4+...)(1+x^3+x^6+...)...

Now change some of the plus signs to minus signs. The resulting series will have coefficients congruent, mod 2, to the coefficients of the generating series for unrestricted partitions. I conjecture that the signs may be chosen such that all the coefficients of the series are either 1, -1, or zero.

Keywords: congruence properties; partition

Jacob Palis Conjecture(Finitude of Attractors)(Dynamical Systems) ★★★★

Author(s):

Conjecture   Let $ Diff^{r}(M)  $ be the space of $ C^{r} $ Diffeomorphisms on the connected , compact and boundaryles manifold M and $ \chi^{r}(M) $ the space of $ C^{r} $ vector fields. There is a dense set $ D\subset Diff^{r}(M) $ ($ D\subset \chi^{r}(M) $ ) such that $ \forall f\in D $ exhibit a finite number of attractor whose basins cover Lebesgue almost all ambient space $ M $

This is a very Deep and Hard problem in Dynamical Systems . It present the dream of the dynamicist mathematicians .

Keywords: Attractors , basins, Finite

Cooking Fever Cheats Generator Android Ios No Survey 2024 (NEW) ★★

Author(s):

Cooking Fever Cheats Generator Android Ios No Survey 2024 (NEW)

Keywords:

Strong colorability ★★★

Author(s): Aharoni; Alon; Haxell

Let $ r $ be a positive integer. We say that a graph $ G $ is strongly $ r $-colorable if for every partition of the vertices to sets of size at most $ r $ there is a proper $ r $-coloring of $ G $ in which the vertices in each set of the partition have distinct colors.

Conjecture   If $ \Delta $ is the maximal degree of a graph $ G $, then $ G $ is strongly $ 2 \Delta $-colorable.

Keywords: strong coloring

Chromatic number of random lifts of complete graphs ★★

Author(s): Amit

Question   Is the chromatic number of a random lift of $ K_5 $ concentrated on a single value?

Keywords: random lifts, coloring

3-Edge-Coloring Conjecture ★★★

Author(s): Arthur; Hoffmann-Ostenhof

Conjecture   Suppose $ G $ with $ |V(G)|>2 $ is a connected cubic graph admitting a $ 3 $-edge coloring. Then there is an edge $ e \in E(G) $ such that the cubic graph homeomorphic to $ G-e $ has a $ 3 $-edge coloring.

Keywords: 3-edge coloring; 4-flow; removable edge

Genshin Impact Generator Cheats without verification (Free) ★★

Author(s):

Genshin Impact Generator Cheats without verification (Free)

Keywords:

Convex 'Fair' Partitions Of Convex Polygons ★★

Author(s): Nandakumar; Ramana

Basic Question: Given any positive integer n, can any convex polygon be partitioned into n convex pieces so that all pieces have the same area and same perimeter?

Definitions: Define a Fair Partition of a polygon as a partition of it into a finite number of pieces so that every piece has both the same area and the same perimeter. Further, if all the resulting pieces are convex, call it a Convex Fair Partition.

Questions: 1. (Rephrasing the above 'basic' question) Given any positive integer n, can any convex polygon be convex fair partitioned into n pieces?

2. If the answer to the above is "Not always'', how does one decide the possibility of such a partition for a given convex polygon and a given n? And if fair convex partition is allowed by a specific convex polygon for a give n, how does one find the optimal convex fair partition that minimizes the total length of the cut segments?

3. Finally, what could one say about higher dimensional analogs of this question?

Conjecture: The authors tend to believe that the answer to the above 'basic' question is "yes". In other words they guess: Every convex polygon allows a convex fair partition into n pieces for any n

Keywords: Convex Polygons; Partitioning

Diophantine quintuple conjecture ★★

Author(s):

Definition   A set of m positive integers $ \{a_1, a_2, \dots, a_m\} $ is called a Diophantine $ m $-tuple if $ a_i\cdot a_j + 1 $ is a perfect square for all $ 1 \leq i < j \leq m $.
Conjecture  (1)   Diophantine quintuple does not exist.

It would follow from the following stronger conjecture [Da]:

Conjecture  (2)   If $ \{a, b, c, d\} $ is a Diophantine quadruple and $ d > \max \{a, b, c\} $, then $ d = a + b + c + 2bc + 2\sqrt{(ab+1)(ac+1)(bc+1)}. $

Keywords:

Even vs. odd latin squares ★★★

Author(s): Alon; Tarsi

A latin square is even if the product of the signs of all of the row and column permutations is 1 and is odd otherwise.

Conjecture   For every positive even integer $ n $, the number of even latin squares of order $ n $ and the number of odd latin squares of order $ n $ are different.

Keywords: latin square

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (FREE METHOD) ★★

Author(s):

Critical Ops Unlimited Credits Cheats IOS Android No Survey 2024 (FREE METHOD)

Keywords:

The Sims Mobile Cheats Generator 2024 New Working Cheats Generator (New Method) ★★

Author(s):

The Sims Mobile Cheats Generator 2024 New Working Cheats Generator (New Method)

Keywords:

Hall-Paige conjecture (Solved) ★★

Author(s):

Hall-Paige conjecture (Solved)

Keywords:

Does the chromatic symmetric function distinguish between trees? ★★

Author(s): Stanley

Problem   Do there exist non-isomorphic trees which have the same chromatic symmetric function?

Keywords: chromatic polynomial; symmetric function; tree

Goldberg's conjecture ★★★

Author(s): Goldberg

The overfull parameter is defined as follows: \[ w(G) = \max_{H \subseteq G} \left\lceil \frac{ |E(H)| }{ \lfloor \tfrac{1}{2} |V(H)| \rfloor} \right\rceil. \]

Conjecture   Every graph $ G $ satisfies $ \chi'(G) \le \max\{ \Delta(G) + 1, w(G) \} $.

Keywords: edge-coloring; multigraph

Solution to the Lonely Runner Conjecture ★★

Author(s):

Solution to the Lonely Runner Conjecture

Keywords:

The Sims Mobile Cheats Generator Free 2024 No Verification Android iOS (tips codes) ★★

Author(s):

The Sims Mobile Cheats Generator Free 2024 No Verification Android iOS (tips codes)

Keywords:

Free Clash of Clans Cheats Gems Generator 2023-2024 ★★

Author(s):

Free Clash of Clans Cheats Gems Generator 2023-2024

Keywords:

Every metamonovalued funcoid is monovalued ★★

Author(s): Porton

Conjecture   Every metamonovalued funcoid is monovalued.

The reverse is almost trivial: Every monovalued funcoid is metamonovalued.

Keywords: monovalued

Fasted Way! For Free Star Stable Star Coins Jorvik Coins Cheats Working 2024 Android Ios ★★

Author(s):

Fasted Way! For Free Star Stable Star Coins Jorvik Coins Cheats Working 2024 Android Ios

Keywords:

Marvel Strike Force Cheats Generator Working (refreshed version) ★★

Author(s):

Marvel Strike Force Cheats Generator Working (refreshed version)

Keywords:

Dragon Ball Z Dokkan Battle Cheats Generator 2024 Update (FREE) ★★

Author(s):

Dragon Ball Z Dokkan Battle Cheats Generator 2024 Update (FREE)

Keywords:

Bingo Blitz Cheats Generator Free Unlimited Cheats Generator (LATEST VERSION) ★★

Author(s):

Bingo Blitz Cheats Generator Free Unlimited Cheats Generator (LATEST VERSION)

Keywords:

Atomicity of the poset of multifuncoids ★★

Author(s): Porton

Conjecture   The poset of multifuncoids of the form $ (\mathscr{P}\mho)^n $ is for every sets $ \mho $ and $ n $:
    \item atomic; \item atomistic.

See below for definition of all concepts and symbols used to in this conjecture.

Refer to this Web site for the theory which I now attempt to generalize.

Keywords: multifuncoid

Obstacle number of planar graphs

Author(s): Alpert; Koch; Laison

Does there exist a planar graph with obstacle number greater than 1? Is there some $ k $ such that every planar graph has obstacle number at most $ k $?

Keywords: graph drawing; obstacle number; planar graph; visibility graph

3-flow conjecture ★★★

Author(s): Tutte

Conjecture   Every 4-edge-connected graph has a nowhere-zero 3-flow.

Keywords: nowhere-zero flow

Real Racing 3 Cheats Generator Tested on iOS and Android (Latest Method) ★★

Author(s):

Real Racing 3 Cheats Generator Tested on iOS and Android (Latest Method)

Keywords:

Seagull problem ★★★

Author(s): Seymour

Conjecture   Every $ n $ vertex graph with no independent set of size $ 3 $ has a complete graph on $ \ge \frac{n}{2} $ vertices as a minor.

Keywords: coloring; complete graph; minor

Smooth 4-dimensional Poincare conjecture ★★★★

Author(s): Poincare; Smale; Stallings

Conjecture   If a $ 4 $-manifold has the homotopy type of the $ 4 $-sphere $ S^4 $, is it diffeomorphic to $ S^4 $?

Keywords: 4-manifold; poincare; sphere

Strong 5-cycle double cover conjecture ★★★

Author(s): Arthur; Hoffmann-Ostenhof

Conjecture   Let $ C $ be a circuit in a bridgeless cubic graph $ G $. Then there is a five cycle double cover of $ G $ such that $ C $ is a subgraph of one of these five cycles.

Keywords: cycle cover

Which compact boundaryless 3-manifolds embed smoothly in the 4-sphere? ★★★

Author(s): Kirby

Problem   Determine a computable set of invariants that allow one to determine, given a compact boundaryless 3-manifold, whether or not it embeds smoothly in the 4-sphere. This should include a constructive procedure to find an embedding if the manifold is embeddable.

Keywords: 3-manifold; 4-sphere; embedding

Sub-atomic product of funcoids is a categorical product ★★

Author(s):

Conjecture   In the category of continuous funcoids (defined similarly to the category of topological spaces) the following is a direct categorical product:
    \item Product morphism is defined similarly to the category of topological spaces. \item Product object is the sub-atomic product. \item Projections are sub-atomic projections.

See details, exact definitions, and attempted proofs here.

Keywords: