Random

Special Primes

Author(s): George BALAN

Conjecture   Let $ p $ be a prime natural number. Find all primes $ q\equiv1\left(\mathrm{mod}\: p\right) $, such that $ 2^{\frac{\left(q-1\right)}{p}}\equiv1\left(\mathrm{mod}\: q\right) $.

Keywords:

Equality in a matroidal circumference bound ★★

Author(s): Oxley; Royle

Question   Is the binary affine cube $ AG(3,2) $ the only 3-connected matroid for which equality holds in the bound $$E(M) \leq c(M) c(M^*) / 2$$ where $ c(M) $ is the circumference (i.e. largest circuit size) of $ M $?

Keywords: circumference

Switching reconstruction conjecture ★★

Author(s): Stanley

Conjecture   Every simple graph on five or more vertices is switching-reconstructible.

Keywords: reconstruction

Singmaster's conjecture ★★

Author(s): Singmaster

Conjecture   There is a finite upper bound on the multiplicities of entries in Pascal's triangle, other than the number $ 1 $.

The number $ 2 $ appears once in Pascal's triangle, $ 3 $ appears twice, $ 6 $ appears three times, and $ 10 $ appears $ 4 $ times. There are infinite families of numbers known to appear $ 6 $ times. The only number known to appear $ 8 $ times is $ 3003 $. It is not known whether any number appears more than $ 8 $ times. The conjectured upper bound could be $ 8 $; Singmaster thought it might be $ 10 $ or $ 12 $. See Singmaster's conjecture.

Keywords: Pascal's triangle

Fortnite Working Generator V-Bucks Generator (NEW AND FREE) ★★

Author(s):

Fortnite Working Generator V-Bucks Generator (NEW AND FREE)

Keywords:

Direct proof of a theorem about compact funcoids ★★

Author(s): Porton

Conjecture   Let $ f $ is a $ T_1 $-separable (the same as $ T_2 $ for symmetric transitive) compact funcoid and $ g $ is a uniform space (reflexive, symmetric, and transitive endoreloid) such that $ ( \mathsf{\tmop{FCD}}) g = f $. Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

The main purpose here is to find a direct proof of this conjecture. It seems that this conjecture can be derived from the well known theorem about existence of exactly one uniformity on a compact set. But that would be what I call an indirect proof, we need a direct proof instead.

The direct proof may be constructed by correcting all errors an omissions in this draft article.

Direct proof could be better because with it we would get a little more general statement like this:

Conjecture   Let $ f $ be a $ T_1 $-separable compact reflexive symmetric funcoid and $ g $ be a reloid such that
    \item $ ( \mathsf{\tmop{FCD}}) g = f $; \item $ g \circ g^{- 1} \sqsubseteq g $.

Then $ g = \langle f \times f \rangle^{\ast} \Delta $.

Keywords: compact space; compact topology; funcoid; reloid; uniform space; uniformity

Latest Bingo Blitz Cheats Generator 999K Credits Free 2024 in 5 minutes (Up To) ★★

Author(s):

Latest Bingo Blitz Cheats Generator 999K Credits Free 2024 in 5 minutes (Up To)

Keywords:

End-Devouring Rays

Author(s): Georgakopoulos

Problem   Let $ G $ be a graph, $ \omega $ a countable end of $ G $, and $ K $ an infinite set of pairwise disjoint $ \omega $-rays in $ G $. Prove that there is a set $ K' $ of pairwise disjoint $ \omega $-rays that devours $ \omega $ such that the set of starting vertices of rays in $ K' $ equals the set of starting vertices of rays in $ K $.

Keywords: end; ray

Star chromatic index of complete graphs ★★

Author(s): Dvorak; Mohar; Samal

Conjecture   Is it possible to color edges of the complete graph $ K_n $ using $ O(n) $ colors, so that the coloring is proper and no 4-cycle and no 4-edge path is using only two colors?

Equivalently: is the star chromatic index of $ K_n $ linear in $ n $?

Keywords: complete graph; edge coloring; star coloring

Monochromatic empty triangles ★★

Author(s):

Monochromatic empty triangles

Keywords:

Convex 'Fair' Partitions Of Convex Polygons ★★

Author(s): Nandakumar; Ramana

Basic Question: Given any positive integer n, can any convex polygon be partitioned into n convex pieces so that all pieces have the same area and same perimeter?

Definitions: Define a Fair Partition of a polygon as a partition of it into a finite number of pieces so that every piece has both the same area and the same perimeter. Further, if all the resulting pieces are convex, call it a Convex Fair Partition.

Questions: 1. (Rephrasing the above 'basic' question) Given any positive integer n, can any convex polygon be convex fair partitioned into n pieces?

2. If the answer to the above is "Not always'', how does one decide the possibility of such a partition for a given convex polygon and a given n? And if fair convex partition is allowed by a specific convex polygon for a give n, how does one find the optimal convex fair partition that minimizes the total length of the cut segments?

3. Finally, what could one say about higher dimensional analogs of this question?

Conjecture: The authors tend to believe that the answer to the above 'basic' question is "yes". In other words they guess: Every convex polygon allows a convex fair partition into n pieces for any n

Keywords: Convex Polygons; Partitioning

Lindelöf hypothesis ★★

Author(s): Lindelöf

Conjecture   For any $ \epsilon>0 $ $$\zeta\left(\frac12 + it\right) \mbox{ is }\mathcal{O}(t^\epsilon).$$

Since $ \epsilon $ can be replaced by a smaller value, we can also write the conjecture as, for any positive $ \epsilon $, $$\zeta\left(\frac12 + it\right) \mbox{ is }o(t^\varepsilon).$$

Keywords: Riemann Hypothesis; zeta

2-colouring a graph without a monochromatic maximum clique ★★

Author(s): Hoang; McDiarmid

Conjecture   If $ G $ is a non-empty graph containing no induced odd cycle of length at least $ 5 $, then there is a $ 2 $-vertex colouring of $ G $ in which no maximum clique is monochromatic.

Keywords: maximum clique; Partitioning

Complexity of the H-factor problem. ★★

Author(s): Kühn; Osthus

An $ H $-factor in a graph $ G $ is a set of vertex-disjoint copies of $ H $ covering all vertices of $ G $.

Problem  Let $ c $ be a fixed positive real number and $ H $ a fixed graph. Is it NP-hard to determine whether a graph $ G $ on $ n $ vertices and minimum degree $ cn $ contains and $ H $-factor?

Keywords:

War Machines Cheats Free Unlimited Coins Diamonds Generator (new codes cheat) ★★

Author(s):

Conjecture  

Keywords:

Fasted Way! For Free Star Stable Star Coins Jorvik Coins Cheats Working 2024 Android Ios ★★

Author(s):

Fasted Way! For Free Star Stable Star Coins Jorvik Coins Cheats Working 2024 Android Ios

Keywords:

Are different notions of the crossing number the same? ★★★

Author(s): Pach; Tóth

Problem   Does the following equality hold for every graph $ G $? \[ \text{pair-cr}(G) = \text{cr}(G) \]

The crossing number $ \text{cr}(G) $ of a graph $ G $ is the minimum number of edge crossings in any drawing of $ G $ in the plane. In the pairwise crossing number $ \text{pair-cr}(G) $, we minimize the number of pairs of edges that cross.

Keywords: crossing number; pair-crossing number

Jaeger's modular orientation conjecture ★★★

Author(s): Jaeger

Conjecture   Every $ 4k $-edge-connected graph can be oriented so that $ {\mathit indegree}(v) - {\mathit outdegree}(v) \cong 0 $ (mod $ 2k+1 $) for every vertex $ v $.

Keywords: nowhere-zero flow; orientation

Genshin Impact Cheats Generator 2024 Update (FREE) ★★

Author(s):

Genshin Impact Cheats Generator 2024 Update (FREE)

Keywords:

Non-edges vs. feedback edge sets in digraphs ★★★

Author(s): Chudnovsky; Seymour; Sullivan

For any simple digraph $ G $, we let $ \gamma(G) $ be the number of unordered pairs of nonadjacent vertices (i.e. the number of non-edges), and $ \beta(G) $ be the size of the smallest feedback edge set.

Conjecture  If $ G $ is a simple digraph without directed cycles of length $ \le 3 $, then $ \beta(G) \le \frac{1}{2} \gamma(G) $.

Keywords: acyclic; digraph; feedback edge set; triangle free

Hamiltonian cycles in line graphs of infinite graphs ★★

Author(s): Georgakopoulos

Conjecture  
    \item If $ G $ is a 4-edge-connected locally finite graph, then its line graph is hamiltonian. \item If the line graph $ L(G) $ of a locally finite graph $ G $ is 4-connected, then $ L(G) $ is hamiltonian.

Keywords: hamiltonian; infinite graph; line graphs

The Bermond-Thomassen Conjecture ★★

Author(s): Bermond; Thomassen

Conjecture   For every positive integer $ k $, every digraph with minimum out-degree at least $ 2k-1 $ contains $ k $ disjoint cycles.

Keywords: cycles

Fasted Way! For Free Golf Battle Cheats Generator Working 2024 Android Ios ★★

Author(s):

Fasted Way! For Free Golf Battle Cheats Generator Working 2024 Android Ios

Keywords:

Inequality for square summable complex series ★★

Author(s): Retkes

Conjecture   For all $ \alpha=(\alpha_1,\alpha_2,\ldots)\in l_2(\cal{C}) $ the following inequality holds $$\sum_{n\geq 1}|\alpha_n|^2\geq \frac{6}{\pi^2}\sum_{k\geq0}\bigg| \sum_{l\geq0}\frac{1}{l+1}\alpha_{2^k(2l+1)}\bigg|^2 $$

Keywords: Inequality

Finite Lattice Representation Problem ★★★★

Author(s):

Conjecture  

There exists a finite lattice which is not the congruence lattice of a finite algebra.

Keywords: congruence lattice; finite algebra

Match Masters Coins Cheats 2024 Update (FREE!!) ★★

Author(s):

Match Masters Coins Cheats 2024 Update (FREE!!)

Keywords:

Mastering Subway Surfers: Your Ultimate Guide to Cheats, Hacks, and Generators ★★

Author(s):

Conjecture  

Keywords:

REAL* Free!! Call Of Duty Mobile Cheats Generator (Trick 2024) ★★

Author(s):

REAL* Free!! Call Of Duty Mobile Cheats Generator (Trick 2024)

Keywords:

Clash of Clans Gems Cheats without verification (Free) ★★

Author(s):

Clash of Clans Gems Cheats without verification (Free)

Keywords:

Cookie Run Kingdom Cheats Generator Android Ios 2024 Cheats Generator (free) ★★

Author(s):

Cookie Run Kingdom Cheats Generator Android Ios 2024 Cheats Generator (free)

Keywords:

New.updated Kim Kardashian Hollywood Cash Stars Cheats 2024 Free No Verification "Free" ★★

Author(s):

New.updated Kim Kardashian Hollywood Cash Stars Cheats 2024 Free No Verification "Free"

Keywords:

Graham's conjecture on tree reconstruction ★★

Author(s): Graham

Problem   for every graph $ G $, we let $ L(G) $ denote the line graph of $ G $. Given that $ G $ is a tree, can we determine it from the integer sequence $ |V(G)|, |V(L(G))|, |V(L(L(G)))|, \ldots $?

Keywords: reconstruction; tree

F_d versus F_{d+1} ★★★

Author(s): Krajicek

Problem   Find a constant $ k $ such that for any $ d $ there is a sequence of tautologies of depth $ k $ that have polynomial (or quasi-polynomial) size proofs in depth $ d+1 $ Frege system $ F_{d+1} $ but requires exponential size $ F_d $ proofs.

Keywords: Frege system; short proof

Hungry Shark World Cheats Generator 2024 (Legal) ★★

Author(s):

Hungry Shark World Cheats Generator 2024 (Legal)

Keywords:

Every 4-connected toroidal graph has a Hamilton cycle ★★

Author(s): Grunbaum; Nash-Williams

Conjecture   Every 4-connected toroidal graph has a Hamilton cycle.

Keywords:

The additive basis conjecture ★★★

Author(s): Jaeger; Linial; Payan; Tarsi

Conjecture   For every prime $ p $, there is a constant $ c(p) $ (possibly $ c(p)=p $) so that the union (as multisets) of any $ c(p) $ bases of the vector space $ ({\mathbb Z}_p)^n $ contains an additive basis.

Keywords: additive basis; matrix

World of Warships Cheats Generator 2024 (generator!) ★★

Author(s):

World of Warships Cheats Generator 2024 (generator!)

Keywords:

4-regular 4-chromatic graphs of high girth ★★

Author(s): Grunbaum

Problem   Do there exist 4-regular 4-chromatic graphs of arbitrarily high girth?

Keywords: coloring; girth

Free Royal Match Free Coins Cheats 2024 (Safe) ★★

Author(s):

Free Royal Match Free Coins Cheats 2024 (Safe)

Keywords:

Even vs. odd latin squares ★★★

Author(s): Alon; Tarsi

A latin square is even if the product of the signs of all of the row and column permutations is 1 and is odd otherwise.

Conjecture   For every positive even integer $ n $, the number of even latin squares of order $ n $ and the number of odd latin squares of order $ n $ are different.

Keywords: latin square

PTAS for feedback arc set in tournaments ★★

Author(s): Ailon; Alon

Question   Is there a polynomial time approximation scheme for the feedback arc set problem for the class of tournaments?

Keywords: feedback arc set; PTAS; tournament

Dragon Ball Z Dokkan Battle Cheats Generator 2024 (FREE!) ★★

Author(s):

Dragon Ball Z Dokkan Battle Cheats Generator 2024 (FREE!)

Keywords:

Strict inequalities for products of filters

Author(s): Porton

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} \subset \mathcal{A}   \times^{\mathsf{\ensuremath{\operatorname{RLD}}}} \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $. Particularly, is this formula true for $ \mathcal{A} = \mathcal{B} = \Delta \cap \uparrow^{\mathbb{R}} \left( 0 ; +   \infty \right) $?

A weaker conjecture:

Conjecture   $ \mathcal{A} \times^{\mathsf{\ensuremath{\operatorname{RLD}}}}_F \mathcal{B}   \subset \mathcal{A} \ltimes \mathcal{B} $ for some filter objects $ \mathcal{A} $, $ \mathcal{B} $.

Keywords: filter products

Rank vs. Genus ★★★

Author(s): Johnson

Question   Is there a hyperbolic 3-manifold whose fundamental group rank is strictly less than its Heegaard genus? How much can the two differ by?

Keywords:

Laplacian Degrees of a Graph ★★

Author(s): Guo

Conjecture   If $ G $ is a connected graph on $ n $ vertices, then $ c_k(G) \ge d_k(G) $ for $ k = 1, 2, \dots, n-1 $.

Keywords: degree sequence; Laplacian matrix

Erdős-Posa property for long directed cycles ★★

Author(s): Havet; Maia

Conjecture   Let $ \ell \geq 2 $ be an integer. For every integer $ n\geq 0 $, there exists an integer $ t_n=t_n(\ell) $ such that for every digraph $ D $, either $ D $ has a $ n $ pairwise-disjoint directed cycles of length at least $ \ell $, or there exists a set $ T $ of at most $ t_n $ vertices such that $ D-T $ has no directed cycles of length at least $ \ell $.

Keywords:

8 Ball Pool Free Cash Cheats Fully Works No Survey (Cheats) ★★

Author(s):

8 Ball Pool Free Cash Cheats Fully Works No Survey (Cheats)

Keywords:

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator IOS Android 2024 (get codes) ★★

Author(s):

Simpsons Tapped Out Cheats Generator Unlimited Cheats Generator IOS Android 2024 (get codes)

Keywords:

Raid Shadow Legends Cheats Generator Working (refreshed version) ★★

Author(s):

Raid Shadow Legends Cheats Generator Working (refreshed version)

Keywords:

The Alon-Tarsi basis conjecture ★★

Author(s): Alon; Linial; Meshulam

Conjecture   If $ B_1,B_2,\ldots B_p $ are invertible $ n \times n $ matrices with entries in $ {\mathbb Z}_p $ for a prime $ p $, then there is a $ n \times (p-1)n $ submatrix $ A $ of $ [B_1 B_2 \ldots B_p] $ so that $ A $ is an AT-base.

Keywords: additive basis; matrix