Conjecture Define a array of positive integers where the first row consists of some distinct positive integers arranged in increasing order, and the second row consists of any positive integers in any order. Create a new array where the first row consists of all the integers that occur in the first array, arranged in increasing order, and the second row consists of their multiplicities. Repeat the process. For example, starting with the array , the sequence is: -> -> -> -> -> -> -> -> -> -> -> , and we now have a fixed point (loop of one array).
The process always results in a loop of 1, 2, or 3 arrays.
Problem Let be a -dimensional smooth submanifold of , diffeomorphic to . By the Jordan-Brouwer separation theorem, separates into the union of two compact connected -manifolds which share as a common boundary. The Schoenflies problem asks, are these -manifolds diffeomorphic to ? ie: is unknotted?
The crossing number of is the minimum number of crossings in all drawings of in the plane.
The -dimensional (hyper)cube is the graph whose vertices are all binary sequences of length , and two of the sequences are adjacent in if they differ in precisely one coordinate.
For a finite (additive) abelian group , the Davenport constant of , denoted , is the smallest integer so that every sequence of elements of with length has a nontrivial subsequence which sums to zero.
Conjecture If in a bridgeless cubic graph the cycles of any -factor are odd, then , where denotes the oddness of the graph , that is, the minimum number of odd cycles in a -factor of .
Conjecture For every rational and every rational , there is no polynomial-time algorithm for the following problem.
Given is a 3SAT (3CNF) formula on variables, for some , and clauses drawn uniformly at random from the set of formulas on variables. Return with probability at least 0.5 (over the instances) that is typical without returning typical for any instance with at least simultaneously satisfiable clauses.
Conjecture Let be a sequence of points in with the property that for every , the points are distinct, lie on a unique sphere, and further, is the center of this sphere. If this sequence is periodic, must its period be ?
Problem Two players start at a distance of 2 on an (undirected) line (so, neither player knows the direction of the other) and both move at a maximum speed of 1. What is the infimum expected meeting time (first time when the players occupy the same point) which can be achieved assuming the two players must adopt the same strategy?
Problem Given two codes , their Tensor Product is the code that consists of the matrices whose rows are codewords of and whose columns are codewords of . The product is said to be robust if whenever a matrix is far from , the rows (columns) of are far from (, respectively).
The problem is to give a characterization of the pairs whose tensor product is robust.
Conjecture Let be a finite family of finite sets, not all empty, that is closed under taking unions. Then there exists such that is an element of at least half the members of .
Conjecture For every , there exists an integer such that if is a digraph whose arcs are colored with colors, then has a set which is the union of stables sets so that every vertex has a monochromatic path to some vertex in .