Random

The permanent conjecture ★★

Author(s): Kahn

Conjecture   If $ A $ is an invertible $ n \times n $ matrix, then there is an $ n \times n $ submatrix $ B $ of $ [A A] $ so that $ perm(B) $ is nonzero.

Keywords: invertible; matrix; permanent

The robustness of the tensor product ★★★

Author(s): Ben-Sasson; Sudan

Problem   Given two codes $ R,C $, their Tensor Product $ R \otimes C $ is the code that consists of the matrices whose rows are codewords of $ R $ and whose columns are codewords of $ C $. The product $ R \otimes C $ is said to be robust if whenever a matrix $ M $ is far from $ R \otimes C $, the rows (columns) of $ M $ are far from $ R $ ($ C $, respectively).

The problem is to give a characterization of the pairs $ R,C $ whose tensor product is robust.

Keywords: codes; coding; locally testable; robustness

Crossing sequences ★★

Author(s): Archdeacon; Bonnington; Siran

Conjecture   Let $ (a_0,a_1,a_2,\ldots,0) $ be a sequence of nonnegative integers which strictly decreases until $ 0 $.

Then there exists a graph that be drawn on a surface with orientable (nonorientable, resp.) genus $ i $ with $ a_i $ crossings, but not with less crossings.

Keywords: crossing number; crossing sequence

What is the homotopy type of the group of diffeomorphisms of the 4-sphere? ★★★★

Author(s): Smale

Problem   $ Diff(S^4) $ has the homotopy-type of a product space $ Diff(S^4) \simeq \mathbb O_5 \times Diff(D^4) $ where $ Diff(D^4) $ is the group of diffeomorphisms of the 4-ball which restrict to the identity on the boundary. Determine some (any?) homotopy or homology groups of $ Diff(D^4) $.

Keywords: 4-sphere; diffeomorphisms

Switching reconstruction conjecture ★★

Author(s): Stanley

Conjecture   Every simple graph on five or more vertices is switching-reconstructible.

Keywords: reconstruction

Arc-disjoint strongly connected spanning subdigraphs ★★

Author(s): Bang-Jensen; Yeo

Conjecture   There exists an ineteger $ k $ so that every $ k $-arc-connected digraph contains a pair of arc-disjoint strongly connected spanning subdigraphs?

Keywords:

MONOPOLY GO Cheats Generator 2024 (Legal) ★★

Author(s):

MONOPOLY GO Cheats Generator 2024 (Legal)

Keywords:

Hamilton cycle in small d-diregular graphs ★★

Author(s): Jackson

An directed graph is $ k $-diregular if every vertex has indegree and outdegree at least $ k $.

Conjecture   For $ d >2 $, every $ d $-diregular oriented graph on at most $ 4d+1 $ vertices has a Hamilton cycle.

Keywords:

Weak pentagon problem ★★

Author(s): Samal

Conjecture   If $ G $ is a cubic graph not containing a triangle, then it is possible to color the edges of $ G $ by five colors, so that the complement of every color class is a bipartite graph.

Keywords: Clebsch graph; cut-continuous mapping; edge-coloring; homomorphism; pentagon

Davenport's constant ★★★

Author(s):

For a finite (additive) abelian group $ G $, the Davenport constant of $ G $, denoted $ s(G) $, is the smallest integer $ t $ so that every sequence of elements of $ G $ with length $ \ge t $ has a nontrivial subsequence which sums to zero.

Conjecture   $ s( {\mathbb Z}_n^d) = d(n-1) + 1 $

Keywords: Davenport constant; subsequence sum; zero sum

Acyclic list colouring of planar graphs. ★★★

Author(s): Borodin; Fon-Der-Flasss; Kostochka; Raspaud; Sopena

Conjecture   Every planar graph is acyclically 5-choosable.

Keywords:

Sequence defined on multisets ★★

Author(s): Erickson

Conjecture   Define a $ 2 \times n $ array of positive integers where the first row consists of some distinct positive integers arranged in increasing order, and the second row consists of any positive integers in any order. Create a new array where the first row consists of all the integers that occur in the first array, arranged in increasing order, and the second row consists of their multiplicities. Repeat the process. For example, starting with the array $ [1; 1] $, the sequence is: $ [1; 1] $ -> $ [1; 2] $ -> $ [1, 2; 1, 1] $ -> $ [1, 2; 3, 1] $ -> $ [1, 2, 3; 2, 1, 1] $ -> $ [1, 2, 3; 3, 2, 1] $ -> $ [1, 2, 3; 2, 2, 2] $ -> $ [1, 2, 3; 1, 4, 1] $ -> $ [1, 2, 3, 4; 3, 1, 1, 1] $ -> $ [1, 2, 3, 4; 4, 1, 2, 1] $ -> $ [1, 2, 3, 4; 3, 2, 1, 2] $ -> $ [1, 2, 3, 4; 2, 3, 2, 1] $, and we now have a fixed point (loop of one array).

The process always results in a loop of 1, 2, or 3 arrays.

Keywords: multiset; sequence

Circular choosability of planar graphs

Author(s): Mohar

Let $ G = (V, E) $ be a graph. If $ p $ and $ q $ are two integers, a $ (p,q) $-colouring of $ G $ is a function $ c $ from $ V $ to $ \{0,\dots,p-1\} $ such that $ q \le |c(u)-c(v)| \le p-q $ for each edge $ uv\in E $. Given a list assignment $ L $ of $ G $, i.e.~a mapping that assigns to every vertex $ v $ a set of non-negative integers, an $ L $-colouring of $ G $ is a mapping $ c : V \to N $ such that $ c(v)\in L(v) $ for every $ v\in V $. A list assignment $ L $ is a $ t $-$ (p,q) $-list-assignment if $ L(v) \subseteq \{0,\dots,p-1\} $ and $ |L(v)| \ge tq $ for each vertex $ v \in V $ . Given such a list assignment $ L $, the graph G is $ (p,q) $-$ L $-colourable if there exists a $ (p,q) $-$ L $-colouring $ c $, i.e. $ c $ is both a $ (p,q) $-colouring and an $ L $-colouring. For any real number $ t \ge 1 $, the graph $ G $ is $ t $-$ (p,q) $-choosable if it is $ (p,q) $-$ L $-colourable for every $ t $-$ (p,q) $-list-assignment $ L $. Last, $ G $ is circularly $ t $-choosable if it is $ t $-$ (p,q) $-choosable for any $ p $, $ q $. The circular choosability (or circular list chromatic number or circular choice number) of G is $$cch(G) := \inf\{t \ge 1 : G \text{ is circularly $t$-choosable}\}.$$

Problem   What is the best upper bound on circular choosability for planar graphs?

Keywords: choosability; circular colouring; planar graphs

Is there an algorithm to determine if a triangulated 4-manifold is combinatorially equivalent to the 4-sphere? ★★★

Author(s): Novikov

Problem   Is there an algorithm which takes as input a triangulated 4-manifold, and determines whether or not this manifold is combinatorially equivalent to the 4-sphere?

Keywords: 4-sphere; algorithm

Algebra ★★

Author(s):

Algebra

Keywords:

Stable set meeting all longest directed paths. ★★

Author(s): Laborde; Payan; Xuong N.H.

Conjecture   Every digraph has a stable set meeting all longest directed paths

Keywords:

Toon Blast Cheats Generator Android Ios 2024 Cheats Generator (re-designed) ★★

Author(s):

Toon Blast Cheats Generator Android Ios 2024 Cheats Generator (re-designed)

Keywords:

Growth of finitely presented groups ★★★

Author(s): Adyan

Problem   Does there exist a finitely presented group of intermediate growth?

Keywords: finitely presented; growth

Turán number of a finite family. ★★

Author(s): Erdos; Simonovits

Given a finite family $ {\cal F} $ of graphs and an integer $ n $, the Turán number $ ex(n,{\cal F}) $ of $ {\cal F} $ is the largest integer $ m $ such that there exists a graph on $ n $ vertices with $ m $ edges which contains no member of $ {\cal F} $ as a subgraph.

Conjecture   For every finite family $ {\cal F} $ of graphs there exists an $ F\in {\cal F} $ such that $ ex(n, F ) = O(ex(n, {\cal F})) $ .

Keywords:

F_d versus F_{d+1} ★★★

Author(s): Krajicek

Problem   Find a constant $ k $ such that for any $ d $ there is a sequence of tautologies of depth $ k $ that have polynomial (or quasi-polynomial) size proofs in depth $ d+1 $ Frege system $ F_{d+1} $ but requires exponential size $ F_d $ proofs.

Keywords: Frege system; short proof

Free Hollywood Story Free Diamonds Gems Cheats 2024 (Safe) ★★

Author(s):

Free Hollywood Story Free Diamonds Gems Cheats 2024 (Safe)

Keywords:

Nonseparating planar continuum ★★

Author(s):

Conjecture   Does any path-connected, compact set in the plane which does not separate the plane have the fixed point property?

A set has the fixed point property if every continuous map from it into itself has a fixed point.

Keywords: fixed point

Circular colouring the orthogonality graph ★★

Author(s): DeVos; Ghebleh; Goddyn; Mohar; Naserasr

Let $ {\mathcal O} $ denote the graph with vertex set consisting of all lines through the origin in $ {\mathbb R}^3 $ and two vertices adjacent in $ {\mathcal O} $ if they are perpendicular.

Problem   Is $ \chi_c({\mathcal O}) = 4 $?

Keywords: circular coloring; geometric graph; orthogonality

Match Masters Free Coins Cheats 2024 (LEGIT) ★★

Author(s):

Match Masters Free Coins Cheats 2024 (LEGIT)

Keywords:

Approximation Ratio for Maximum Edge Disjoint Paths problem ★★

Author(s): Bentz

Conjecture   Can the approximation ratio $ O(\sqrt{n}) $ be improved for the Maximum Edge Disjoint Paths problem (MaxEDP) in planar graphs or can an inapproximability result stronger than $ \mathcal{APX} $-hardness?

Keywords: approximation algorithms; Disjoint paths; planar graph; polynomial algorithm

Monochromatic empty triangles ★★★

Author(s):

If $ X \subseteq {\mathbb R}^2 $ is a finite set of points which is 2-colored, an empty triangle is a set $ T \subseteq X $ with $ |T|=3 $ so that the convex hull of $ T $ is disjoint from $ X \setminus T $. We say that $ T $ is monochromatic if all points in $ T $ are the same color.

Conjecture   There exists a fixed constant $ c $ with the following property. If $ X \subseteq {\mathbb R}^2 $ is a set of $ n $ points in general position which is 2-colored, then it has $ \ge cn^2 $ monochromatic empty triangles.

Keywords: empty triangle; general position; ramsey theory

Realisation problem for the space of knots in the 3-sphere ★★

Author(s): Budney

Problem   Given a link $ L $ in $ S^3 $, let the symmetry group of $ L $ be denoted $ Sym(L) = \pi_0 Diff(S^3,L) $ ie: isotopy classes of diffeomorphisms of $ S^3 $ which preserve $ L $, where the isotopies are also required to preserve $ L $.

Now let $ L $ be a hyperbolic link. Assume $ L $ has the further `Brunnian' property that there exists a component $ L_0 $ of $ L $ such that $ L \setminus L_0 $ is the unlink. Let $ A_L $ be the subgroup of $ Sym(L) $ consisting of diffeomorphisms of $ S^3 $ which preserve $ L_0 $ together with its orientation, and which preserve the orientation of $ S^3 $.

There is a representation $ A_L \to \pi_0 Diff(L \setminus L_0) $ given by restricting the diffeomorphism to the $ L \setminus L_0 $. It's known that $ A_L $ is always a cyclic group. And $ \pi_0 Diff(L \setminus L_0) $ is a signed symmetric group -- the wreath product of a symmetric group with $ \mathbb Z_2 $.

Problem: What representations can be obtained?

Keywords: knot space; symmetry

MONOPOLY GO Cheats Generator IOS Android No Verification 2024 (fresh method) ★★

Author(s):

MONOPOLY GO Cheats Generator IOS Android No Verification 2024 (fresh method)

Keywords:

Forcing a 2-regular minor ★★

Author(s): Reed; Wood

Conjecture   Every graph with average degree at least $ \frac{4}{3}t-2 $ contains every 2-regular graph on $ t $ vertices as a minor.

Keywords: minors

8 Ball Pool Free Cash Cheats Fully Works No Survey (Cheats) ★★

Author(s):

8 Ball Pool Free Cash Cheats Fully Works No Survey (Cheats)

Keywords:

Antidirected trees in digraphs ★★

Author(s): Addario-Berry; Havet; Linhares Sales; Reed; Thomassé

An antidirected tree is an orientation of a tree in which every vertex has either indegree 0 or outdergree 0.

Conjecture   Let $ D $ be a digraph. If $ |A(D)| > (k-2) |V(D)| $, then $ D $ contains every antidirected tree of order $ k $.

Keywords:

MacEachen Conjecture

Author(s): McEachen

Conjecture   Every odd prime number must either be adjacent to, or a prime distance away from a primorial or primorial product.

Keywords: primality; prime distribution

Geodesic cycles and Tutte's Theorem ★★

Author(s): Georgakopoulos; Sprüssel

Problem   If $ G $ is a $ 3 $-connected finite graph, is there an assignment of lengths $ \ell: E(G) \to \mathb R^+ $ to the edges of $ G $, such that every $ \ell $-geodesic cycle is peripheral?

Keywords: cycle space; geodesic cycles; peripheral cycles

Asymptotic Distribution of Form of Polyhedra ★★

Author(s): Rüdinger

Problem   Consider the set of all topologically inequivalent polyhedra with $ k $ edges. Define a form parameter for a polyhedron as $ \beta:= v/(k+2) $ where $ v $ is the number of vertices. What is the distribution of $ \beta $ for $ k \to \infty $?

Keywords: polyhedral graphs, distribution

Linial-Berge path partition duality ★★★

Author(s): Berge; Linial

Conjecture   The minimum $ k $-norm of a path partition on a directed graph $ D $ is no more than the maximal size of an induced $ k $-colorable subgraph.

Keywords: coloring; directed path; partition

4-connected graphs are not uniquely hamiltonian ★★

Author(s): Fleischner

Conjecture   Every $ 4 $-connected graph with a Hamilton cycle has a second Hamilton cycle.

Keywords:

Chromatic number of $\frac{3}{3}$-power of graph ★★

Author(s):

Let $ G $ be a graph and $ m,n\in \mathbb{N} $. The graph $ G^{\frac{m}{n}} $ is defined to be the $ m $-power of the $ n $-subdivision of $ G $. In other words, $ G^{\frac{m}{n}}=(G^{\frac{1}{n}})^m $.

Conjecture   Let $ G $ be a graph with $ \Delta(G)\geq 2 $. Then $ \chi(G^{\frac{3}{3}})\leq 2\Delta(G)+1 $.

Keywords:

Legal* Free Warzone Cheats COD points Generator No Human Verification 2024 ★★

Author(s):

Legal* Free Warzone Cheats COD points Generator No Human Verification 2024

Keywords:

Linear Hypergraphs with Dimension 3 ★★

Author(s): de Fraysseix; Ossona de Mendez; Rosenstiehl

Conjecture   Any linear hypergraph with incidence poset of dimension at most 3 is the intersection hypergraph of a family of triangles and segments in the plane.

Keywords: Hypergraphs

Discrete Logarithm Problem ★★★

Author(s):

If $ p $ is prime and $ g,h \in {\mathbb Z}_p^* $, we write $ \log_g(h) = n $ if $ n \in {\mathbb Z} $ satisfies $ g^n =  h $. The problem of finding such an integer $ n $ for a given $ g,h \in {\mathbb Z}^*_p $ (with $ g \neq 1 $) is the Discrete Log Problem.

Conjecture   There does not exist a polynomial time algorithm to solve the Discrete Log Problem.

Keywords: discrete log; NP

The Bermond-Thomassen Conjecture ★★

Author(s): Bermond; Thomassen

Conjecture   For every positive integer $ k $, every digraph with minimum out-degree at least $ 2k-1 $ contains $ k $ disjoint cycles.

Keywords: cycles

Gardenscapes Cheats Generator Free Cheats Generator 2024 No Verification (Android iOS) ★★

Author(s):

Gardenscapes Cheats Generator Free Cheats Generator 2024 No Verification (Android iOS)

Keywords:

Weighted colouring of hexagonal graphs. ★★

Author(s): McDiarmid; Reed

Conjecture   There is an absolute constant $ c $ such that for every hexagonal graph $ G $ and vertex weighting $ p:V(G)\rightarrow \mathbb{N} $, $$\chi(G,p) \leq \frac{9}{8}\omega(G,p) + c $$

Keywords:

Characterizing (aleph_0,aleph_1)-graphs ★★★

Author(s): Diestel; Leader

Call a graph an $ (\aleph_0,\aleph_1) $-graph if it has a bipartition $ (A,B) $ so that every vertex in $ A $ has degree $ \aleph_0 $ and every vertex in $ B $ has degree $ \aleph_1 $.

Problem   Characterize the $ (\aleph_0,\aleph_1) $-graphs.

Keywords: binary tree; infinite graph; normal spanning tree; set theory

Obstacle number of planar graphs

Author(s): Alpert; Koch; Laison

Does there exist a planar graph with obstacle number greater than 1? Is there some $ k $ such that every planar graph has obstacle number at most $ k $?

Keywords: graph drawing; obstacle number; planar graph; visibility graph

Cycle double cover conjecture ★★★★

Author(s): Seymour; Szekeres

Conjecture   For every graph with no bridge, there is a list of cycles so that every edge is contained in exactly two.

Keywords: cover; cycle

Half-integral flow polynomial values ★★

Author(s): Mohar

Let $ \Phi(G,x) $ be the flow polynomial of a graph $ G $. So for every positive integer $ k $, the value $ \Phi(G,k) $ equals the number of nowhere-zero $ k $-flows in $ G $.

Conjecture   $ \Phi(G,5.5) > 0 $ for every 2-edge-connected graph $ G $.

Keywords: nowhere-zero flow

World of Warships Cheats Generator Fully Works No Survey Cheats Generator (2024) ★★

Author(s):

World of Warships Cheats Generator Fully Works No Survey Cheats Generator (2024)

Keywords:

Working Dragon Ball Legends Cheats Generator Online (No Survey) ★★

Author(s):

Working Dragon Ball Legends Cheats Generator Online (No Survey)

Keywords:

Sums of independent random variables with unbounded variance ★★

Author(s): Feige

Conjecture   If $ X_1, \dotsc, X_n \geq 0 $ are independent random variables with $ \mathbb{E}[X_i] \leq \mu $, then $$\mathrm{Pr} \left( \sum X_i - \mathbb{E} \left[ \sum X_i \right ] < \delta \mu \right) \geq \min \left ( (1 + \delta)^{-1} \delta, e^{-1} \right).$$

Keywords: Inequality; Probability Theory; randomness in TCS