Conjecture If is a finite field with at least 4 elements and is an invertible matrix with entries in , then there are column vectors which have no coordinates equal to zero such that .
Problem Is there an algorithm which takes as input a triangulated 4-manifold, and determines whether or not this manifold is combinatorially equivalent to the 4-sphere?
Let be a simple graph, and for every list assignment let be the maximum number of vertices of which are colorable with respect to . Define , where the minimum is taken over all list assignments with for all .
Conjecture [2] Let be a graph with list chromatic number and . Then
Given integers , let be the smallest integer such that the symmetric group on the set of all words of length over a -letter alphabet can be generated as ( times), where is the shuffle permutation defined by , and is the exchange group consisting of all permutations in preserving the first letters in the words.
Conjecture Let be the space of Diffeomorphisms on the connected , compact and boundaryles manifold M and the space of vector fields. There is a dense set ( ) such that exhibit a finite number of attractor whose basins cover Lebesgue almost all ambient space
This is a very Deep and Hard problem in Dynamical Systems . It present the dream of the dynamicist mathematicians .
The star chromatic index of a graph is the minimum number of colors needed to properly color the edges of the graph so that no path or cycle of length four is bi-colored.
Question Is it true that for every (sub)cubic graph , we have ?
Conjecture Let be a -connected cubic graph and let be a -regular subgraph such that is connected. Then has a cycle double cover which contains (i.e all cycles of ).
Problem Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an grid. The first player (if any) to occupy a set of cells having no two cells in the same row or column is the winner. What is the outcome of the game given optimal play?
Conjecture Let be a simple -uniform hypergraph, and assume that every set of points is contained in at most edges. Then there exists an -edge-coloring so that any two edges which share vertices have distinct colors.
We say that a set is -universal if every vertex planar graph can be drawn in the plane so that each vertex maps to a distinct point in , and all edges are (non-intersecting) straight line segments.
Question Does there exist an -universal set of size ?
Let be a graph. If and are two integers, a -colouring of is a function from to such that for each edge . Given a list assignment of , i.e.~a mapping that assigns to every vertex a set of non-negative integers, an -colouring of is a mapping such that for every . A list assignment is a --list-assignment if and for each vertex . Given such a list assignment , the graph G is --colourable if there exists a --colouring , i.e. is both a -colouring and an -colouring. For any real number , the graph is --choosable if it is --colourable for every --list-assignment . Last, is circularly -choosable if it is --choosable for any , . The circular choosability (or circular list chromatic number or circular choice number) of G is
Problem What is the best upper bound on circular choosability for planar graphs?
Conjecture If is the adjacency matrix of a -regular graph, then there is a symmetric signing of (i.e. replace some entries by ) so that the resulting matrix has all eigenvalues of magnitude at most .
Problem Consider the set of all topologically inequivalent polyhedra with edges. Define a form parameter for a polyhedron as where is the number of vertices. What is the distribution of for ?