Random

Mapping planar graphs to odd cycles ★★★

Author(s): Jaeger

Conjecture   Every planar graph of girth $ \ge 4k $ has a homomorphism to $ C_{2k+1} $.

Keywords: girth; homomorphism; planar graph

The Alon-Tarsi basis conjecture ★★

Author(s): Alon; Linial; Meshulam

Conjecture   If $ B_1,B_2,\ldots B_p $ are invertible $ n \times n $ matrices with entries in $ {\mathbb Z}_p $ for a prime $ p $, then there is a $ n \times (p-1)n $ submatrix $ A $ of $ [B_1 B_2 \ldots B_p] $ so that $ A $ is an AT-base.

Keywords: additive basis; matrix

Outer reloid of restricted funcoid ★★

Author(s): Porton

Question   $ ( \mathsf{RLD})_{\mathrm{out}} (f \cap^{\mathsf{FCD}} ( \mathcal{A} \times^{\mathsf{FCD}} \mathcal{B})) = (( \mathsf{RLD})_{\mathrm{out}} f) \cap^{\mathsf{RLD}} ( \mathcal{A} \times^{\mathsf{RLD}} \mathcal{B}) $ for every filter objects $ \mathcal{A} $ and $ \mathcal{B} $ and a funcoid $ f\in\mathsf{FCD}(\mathrm{Src}\,f; \mathrm{Dst}\,f) $?

Keywords: direct product of filters; outer reloid

Boom Beach Diamonds Generator Working Cheats (refreshed version) ★★

Author(s):

Boom Beach Diamonds Generator Working Cheats (refreshed version)

Keywords:

The Crossing Number of the Complete Graph ★★★

Author(s):

The crossing number $ cr(G) $ of $ G $ is the minimum number of crossings in all drawings of $ G $ in the plane.

Conjecture   $ \displaystyle cr(K_n) =   \frac 14 \floor{\frac n2} \floor{\frac{n-1}2} \floor{\frac{n-2}2} \floor{\frac{n-3}2} $

Keywords: complete graph; crossing number

Stable set meeting all longest directed paths. ★★

Author(s): Laborde; Payan; Xuong N.H.

Conjecture   Every digraph has a stable set meeting all longest directed paths

Keywords:

Golf Battle Cheats Generator Ios and Android 2024 (Working Generator) ★★

Author(s):

Golf Battle Cheats Generator Ios and Android 2024 (Working Generator)

Keywords:

Algebraic independence of pi and e ★★★

Author(s):

Conjecture   $ \pi $ and $ e $ are algebraically independent

Keywords: algebraic independence

Acyclic edge-colouring ★★

Author(s): Fiamcik

Conjecture   Every simple graph with maximum degree $ \Delta $ has a proper $ (\Delta+2) $-edge-colouring so that every cycle contains edges of at least three distinct colours.

Keywords: edge-coloring

Sub-atomic product of funcoids is a categorical product ★★

Author(s):

Conjecture   In the category of continuous funcoids (defined similarly to the category of topological spaces) the following is a direct categorical product:
    \item Product morphism is defined similarly to the category of topological spaces. \item Product object is the sub-atomic product. \item Projections are sub-atomic projections.

See details, exact definitions, and attempted proofs here.

Keywords:

Partial List Coloring ★★★

Author(s): Albertson; Grossman; Haas

Conjecture   Let $ G $ be a simple graph with $ n $ vertices and list chromatic number $ \chi_\ell(G) $. Suppose that $ 0\leq t\leq \chi_\ell $ and each vertex of $ G $ is assigned a list of $ t $ colors. Then at least $ \frac{tn}{\chi_\ell(G)} $ vertices of $ G $ can be colored from these lists.

Keywords: list assignment; list coloring

Bases of many weights ★★★

Author(s): Schrijver; Seymour

Let $ G $ be an (additive) abelian group, and for every $ S \subseteq G $ let $ {\mathit stab}(S) = \{ g \in G : g + S = S \} $.

Conjecture   Let $ M $ be a matroid on $ E $, let $ w : E \rightarrow G $ be a map, put $ S = \{ \sum_{b \in B} w(b) : B \mbox{ is a base} \} $ and $ H = {\mathit stab}(S) $. Then $$|S| \ge |H| \left( 1 - rk(M) + \sum_{Q \in G/H} rk(w^{-1}(Q)) \right).$$

Keywords: matroid; sumset; zero sum

Approximation Ratio for Maximum Edge Disjoint Paths problem ★★

Author(s): Bentz

Conjecture   Can the approximation ratio $ O(\sqrt{n}) $ be improved for the Maximum Edge Disjoint Paths problem (MaxEDP) in planar graphs or can an inapproximability result stronger than $ \mathcal{APX} $-hardness?

Keywords: approximation algorithms; Disjoint paths; planar graph; polynomial algorithm

Minimal graphs with a prescribed number of spanning trees ★★

Author(s): Azarija; Skrekovski

Conjecture   Let $ n \geq 3 $ be an integer and let $ \alpha(n) $ denote the least integer $ k $ such that there exists a simple graph on $ k $ vertices having precisely $ n $ spanning trees. Then $  \alpha(n) = o(\log{n}). $

Keywords: number of spanning trees, asymptotics

Finite entailment of Positive Horn logic ★★

Author(s): Martin

Question   Positive Horn logic (pH) is the fragment of FO involving exactly $ \exists, \forall, \wedge, = $. Does the fragment $ pH \wedge \neg pH $ have the finite model property?

Keywords: entailment; finite satisfiability; horn logic

Unions of triangle free graphs ★★★

Author(s): Erdos; Hajnal

Problem   Does there exist a graph with no subgraph isomorphic to $ K_4 $ which cannot be expressed as a union of $ \aleph_0 $ triangle free graphs?

Keywords: forbidden subgraph; infinite graph; triangle free

My Singing Monsters Cheats Generator Android Ios 2024 Cheats Generator (re-designed) ★★

Author(s):

My Singing Monsters Cheats Generator Android Ios 2024 Cheats Generator (re-designed)

Keywords:

New Hungry Shark Evolution Cheats Generator Unlimited 2024 (NO FAKE AND NO SURVEY) ★★

Author(s):

New Hungry Shark Evolution Cheats Generator Unlimited 2024 (NO FAKE AND NO SURVEY)

Keywords:

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method) ★★

Author(s):

War Thunder Golden Eagles Cheats IOS And Android No Verification Generator 2024 (fresh method)

Keywords:

Erdős–Straus conjecture ★★

Author(s): Erdos; Straus

Conjecture  

For all $ n > 2 $, there exist positive integers $ x $, $ y $, $ z $ such that $$1/x + 1/y + 1/z = 4/n$$.

Keywords: Egyptian fraction

3-Decomposition Conjectures ★★

Author(s):

Conjecture  

Keywords:

Beneš Conjecture ★★★

Author(s): Beneš

Let $ E $ be a non-empty finite set. Given a partition $ \bf h $ of $ E $, the stabilizer of $ \bf h $, denoted $ S(\bf h) $, is the group formed by all permutations of $ E $ preserving each block of $ \mathbf h $.

Problem  ($ \star $)   Find a sufficient condition for a sequence of partitions $ {\bf h}_1, \dots, {\bf h}_\ell $ of $ E $ to be complete, i.e. such that the product of their stabilizers $ S({\bf h}_1) S({\bf h}_2) \dots S({\bf h}_\ell) $ is equal to the whole symmetric group $ \frak S(E) $ on $ E $. In particular, what about completeness of the sequence $ \bf h,\delta(\bf h),\dots,\delta^{\ell-1}(\bf h) $, given a partition $ \bf h $ of $ E $ and a permutation $ \delta $ of $ E $?
Conjecture  (Beneš)   Let $ \bf u $ be a uniform partition of $ E $ and $ \varphi $ be a permutation of $ E $ such that $ \bf u\wedge\varphi(\bf u)=\bf 0 $. Suppose that the set $ \big(\varphi S({\bf u})\big)^{n} $ is transitive, for some integer $ n\ge2 $. Then $$ \frak S(E) = \big(\varphi S({\bf u})\big)^{2n-1}. $$

Keywords:

Working Dragon Ball Legends Cheats Generator Online (No Survey) ★★

Author(s):

Working Dragon Ball Legends Cheats Generator Online (No Survey)

Keywords:

Geometry Dash Gold Coins Stars Cheats 2024 Update (FREE!!) ★★

Author(s):

Geometry Dash Gold Coins Stars Cheats 2024 Update (FREE!!)

Keywords:

House Of Fun Cheats Generator Free Unlimited Cheats Generator (new codes Generator) ★★

Author(s):

House Of Fun Cheats Generator Free Unlimited Cheats Generator (new codes Generator)

Keywords:

Decomposition of completions of reloids ★★

Author(s): Porton

Conjecture   For composable reloids $ f $ and $ g $ it holds
    \item $ \operatorname{Compl} ( g \circ f) = ( \operatorname{Compl} g) \circ f $ if $ f $ is a co-complete reloid; \item $ \operatorname{CoCompl} ( f \circ g) = f \circ \operatorname{CoCompl} g $ if $ f $ is a complete reloid; \item $ \operatorname{CoCompl} ( ( \operatorname{Compl} g) \circ f) = \operatorname{Compl} ( g \circ   ( \operatorname{CoCompl} f)) = ( \operatorname{Compl} g) \circ ( \operatorname{CoCompl} f) $; \item $ \operatorname{Compl} ( g \circ ( \operatorname{Compl} f)) = \operatorname{Compl} ( g \circ   f) $; \item $ \operatorname{CoCompl} ( ( \operatorname{CoCompl} g) \circ f) = \operatorname{CoCompl} ( g   \circ f) $.

Keywords: co-completion; completion; reloid

REAL* Free!! Match Masters Coins Cheats Trick 2024 ★★

Author(s):

REAL* Free!! Match Masters Coins Cheats Trick 2024

Keywords:

The Bollobás-Eldridge-Catlin Conjecture on graph packing ★★★

Author(s):

Conjecture  (BEC-conjecture)   If $ G_1 $ and $ G_2 $ are $ n $-vertex graphs and $ (\Delta(G_1) + 1) (\Delta(G_2) + 1) < n + 1 $, then $ G_1 $ and $ G_2 $ pack.

Keywords: graph packing

Perfect cuboid ★★

Author(s):

Conjecture   Does a perfect cuboid exist?

Keywords:

Matching cut and girth ★★

Author(s):

Question   For every $ d $ does there exists a $ g $ such that every graph with average degree smaller than $ d $ and girth at least $ g $ has a matching-cut?

Keywords: matching cut, matching, cut

Free Gardenscapes Coins Stars Cheats Pro Apk Online (2024) ★★

Author(s):

Free Gardenscapes Coins Stars Cheats Pro Apk Online (2024)

Keywords:

General position subsets ★★

Author(s): Gowers

Question   What is the least integer $ f(n) $ such that every set of at least $ f(n) $ points in the plane contains $ n $ collinear points or a subset of $ n $ points in general position (no three collinear)?

Keywords: general position subset, no-three-in-line problem

Domination in plane triangulations ★★

Author(s): Matheson; Tarjan

Conjecture   Every sufficiently large plane triangulation $ G $ has a dominating set of size $ \le \frac{1}{4} |V(G)| $.

Keywords: coloring; domination; multigrid; planar graph; triangulation

Invariant subspace problem ★★★

Author(s):

Problem   Does every bounded linear operator on an infinite-dimensional separable Hilbert space have a non-trivial closed invariant subspace?

Keywords: subspace

Sums of independent random variables with unbounded variance ★★

Author(s): Feige

Conjecture   If $ X_1, \dotsc, X_n \geq 0 $ are independent random variables with $ \mathbb{E}[X_i] \leq \mu $, then $$\mathrm{Pr} \left( \sum X_i - \mathbb{E} \left[ \sum X_i \right ] < \delta \mu \right) \geq \min \left ( (1 + \delta)^{-1} \delta, e^{-1} \right).$$

Keywords: Inequality; Probability Theory; randomness in TCS

The Sims Mobile Cheats Generator 2024 for Android iOS (UPDATED Generator) ★★

Author(s):

The Sims Mobile Cheats Generator 2024 for Android iOS (UPDATED Generator)

Keywords:

Fishing Clash Cheats Generator IOS Android No Verification 2024 (Tips Strategy) ★★

Author(s):

Fishing Clash Cheats Generator IOS Android No Verification 2024 (Tips Strategy)

Keywords:

Hungry Shark World Cheats Generator 2024 (fresh strategy) ★★

Author(s):

Hungry Shark World Cheats Generator 2024 (fresh strategy)

Keywords:

The Berge-Fulkerson conjecture ★★★★

Author(s): Berge; Fulkerson

Conjecture   If $ G $ is a bridgeless cubic graph, then there exist 6 perfect matchings $ M_1,\ldots,M_6 $ of $ G $ with the property that every edge of $ G $ is contained in exactly two of $ M_1,\ldots,M_6 $.

Keywords: cubic; perfect matching

Boom Beach Unlimited Generator Diamonds Cheats IOS And Android No Survey 2024 (free!!) ★★

Author(s):

Boom Beach Unlimited Generator Diamonds Cheats IOS And Android No Survey 2024 (free!!)

Keywords:

Magic square of squares ★★

Author(s): LaBar

Question   Does there exist a $ 3\times 3 $ magic square composed of distinct perfect squares?

Keywords:

List colorings of edge-critical graphs ★★

Author(s): Mohar

Conjecture   Suppose that $ G $ is a $ \Delta $-edge-critical graph. Suppose that for each edge $ e $ of $ G $, there is a list $ L(e) $ of $ \Delta $ colors. Then $ G $ is $ L $-edge-colorable unless all lists are equal to each other.

Keywords: edge-coloring; list coloring

Triangle-packing vs triangle edge-transversal. ★★

Author(s): Tuza

Conjecture   If $ G $ has at most $ k $ edge-disjoint triangles, then there is a set of $ 2k $ edges whose deletion destroys every triangle.

Keywords:

Graham's conjecture on tree reconstruction ★★

Author(s): Graham

Problem   for every graph $ G $, we let $ L(G) $ denote the line graph of $ G $. Given that $ G $ is a tree, can we determine it from the integer sequence $ |V(G)|, |V(L(G))|, |V(L(L(G)))|, \ldots $?

Keywords: reconstruction; tree

Ramsey properties of Cayley graphs ★★★

Author(s): Alon

Conjecture   There exists a fixed constant $ c $ so that every abelian group $ G $ has a subset $ S \subseteq G $ with $ -S = S $ so that the Cayley graph $ {\mathit Cayley}(G,S) $ has no clique or independent set of size $ > c \log |G| $.

Keywords: Cayley graph; Ramsey number

New Update: Warzone Free COD points Cheats 2024 No Human Verification ★★

Author(s):

New Update: Warzone Free COD points Cheats 2024 No Human Verification

Keywords:

Hedetniemi's Conjecture ★★★

Author(s): Hedetniemi

Conjecture   If $ G,H $ are simple finite graphs, then $ \chi(G \times H) = \min \{ \chi(G), \chi(H) \} $.

Here $ G \times H $ is the tensor product (also called the direct or categorical product) of $ G $ and $ H $.

Keywords: categorical product; coloring; homomorphism; tensor product

Clash of Clans Gems Cheats without verification (Free) ★★

Author(s):

Clash of Clans Gems Cheats without verification (Free)

Keywords:

Wide partition conjecture ★★

Author(s): Chow; Taylor

Conjecture   An integer partition is wide if and only if it is Latin.

Keywords:

Raid Shadow Legends Cheats Generator 2024 (fresh strategy) ★★

Author(s):

Raid Shadow Legends Cheats Generator 2024 (fresh strategy)

Keywords: