Problem Is it true for all , that every sufficiently large -connected graph without a minor has a set of vertices whose deletion results in a planar graph?
A nowhere-zero -flow on is an orientation of together with a function from the edge set of into the real numbers such that , for all , and . The circular flow number of is inf has a nowhere-zero -flow , and it is denoted by .
A graph with maximum vertex degree is a class 1 graph if its edge chromatic number is .
Conjecture Let be an integer and a -regular graph. If is a class 1 graph, then .
Problem Two players alternately write O's (first player) and X's (second player) in the unoccupied cells of an grid. The first player (if any) to occupy four cells at the vertices of a square with horizontal and vertical sides is the winner. What is the outcome of the game given optimal play? Note: Roland Bacher and Shalom Eliahou proved that every 15 x 15 binary matrix contains four equal entries (all 0's or all 1's) at the vertices of a square with horizontal and vertical sides. So the game must result in a winner (the first player) when n=15.
The zeroes of the Riemann zeta function that are inside the Critical Strip (i.e. the vertical strip of the complex plane where the real part of the complex variable is in ]0;1[), are actually located on the Critical line ( the vertical line of the complex plane with real part equal to 1/2)
Problem Let be an indexed family of filters on sets. Which of the below items are always pairwise equal?
1. The funcoid corresponding to this function (considered as a single argument function on indexed families) applied to the reloidal product of filters .
2. The funcoid corresponding to this function (considered as a single argument function on indexed families) applied to the starred reloidal product of filters .
Suppose is a finite group, and is a positive integer dividing . Suppose that has exactly solutions to . Does it follow that these solutions form a subgroup of ?
Conjecture Can all problems that can be computed by a probabilistic Turing machine (with error probability < 1/3) in polynomial time be solved by a deterministic Turing machine in polynomial time? That is, does P = BPP?
Conjecture Let be the space of Diffeomorphisms on the connected , compact and boundaryles manifold M and the space of vector fields. There is a dense set ( ) such that exhibit a finite number of attractor whose basins cover Lebesgue almost all ambient space
This is a very Deep and Hard problem in Dynamical Systems . It present the dream of the dynamicist mathematicians .
Conjecture If is a simple graph which is the union of pairwise edge-disjoint complete graphs, each of which has vertices, then the chromatic number of is .
An oriented colouring of an oriented graph is assignment of colours to the vertices such that no two arcs receive ordered pairs of colours and . It is equivalent to a homomorphism of the digraph onto some tournament of order .
Conjecture Let be a cubic graph with no bridge. Then there is a coloring of the edges of using the edges of the Petersen graph so that any three mutually adjacent edges of map to three mutually adjancent edges in the Petersen graph.
Conjecture If is a non-empty graph containing no induced odd cycle of length at least , then there is a -vertex colouring of in which no maximum clique is monochromatic.
Conjecture The sequence {L(n) mod m}, where L(n) are the Lucas numbers, contains a complete residue system modulo m if and only if m is one of the following: 2, 4, 6, 7, 14, 3^k, k >=1.
For and positive integers, the (mixed) van der Waerden number is the least positive integer such that every (red-blue)-coloring of admits either a -term red arithmetic progression or an -term blue arithmetic progression.
Conjecture In the category of continuous funcoids (defined similarly to the category of topological spaces) the following is a direct categorical product:
\item Product morphism is defined similarly to the category of topological spaces. \item Product object is the sub-atomic product. \item Projections are sub-atomic projections.
See details, exact definitions, and attempted proofs here.
Conjecture There is a finite upper bound on the multiplicities of entries in Pascal's triangle, other than the number .
The number appears once in Pascal's triangle, appears twice, appears three times, and appears times. There are infinite families of numbers known to appear times. The only number known to appear times is . It is not known whether any number appears more than times. The conjectured upper bound could be ; Singmaster thought it might be or . See Singmaster's conjecture.